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Agradeço à ANBIMA, pela confiança investida neste trabalho.

iii





Resumo

Esta dissertação analisa medidas de risco e alocação de riqueza sob uma perspectiva multi-
peŕıodo. Nós propomos um modelo geral de alocação de riqueza e apresentamos as medidas
clássicas de risco multi-peŕıodo sob esta perspectiva, quando as séries de preços dos ativos são
modeladas por processos GARCH ou Brownianos Geométricos. Em seguida é proposta uma
medida alternativa de risco multi-peŕıodo, denominada “Multi-period Relative Value-at-Risk”
(MRVaR), visando corrigir propriedades indesejadas de medidas de risco baseadas em valores
absolutos dos fluxos de caixa. Nós então apresentamos uma cota anaĺıtica para o MRVaR e
estudamos as consequências do uso desta como medida de risco para otimização de portfólio.
Por fim, é feito um estudo numérico do erro cometido ao se utilizar a cota como medida de
risco e desenvolvemos um estudo de caso, utilizando ações da BM&FBovespa, para validar a
metodologia proposta.

Palavras-chave: medidas de risco, risco multi-peŕıodo, otimização de portfólio, Multi-period
Relative Value-at-Risk.
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Abstract

This dissertation analyzes risk measures and wealth allocation under a multi-period perspective.
We propose a general wealth allocation model and present the classic multi-period risk measures
under this perspective, when asset prices time series are modeled by GARCH processes or
Geometric Brownian Motions. We further propose an alternative multi-period risk measure,
called the Multi-period Relative Value-at-Risk (MRVaR), aiming to correct some undesired
features of measures based on absolute values of cash-flows. We then present an analytic
bound for the MRVaR and study the consequences of using the bound itself as a risk metric
for portfolio optimization. Finally, we study numerically the error we incur when using the
bound as risk measure and develop a case study, using assets from BM&FBovespa, to validate
the proposed methodology.

Key words: risk measures, multi-period risk, portfolio optimization, Multi-period Relative
Value-at-Risk.
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Introduction and Overview

Defining multi-period strategies in a scenario whose characteristics evolve in time demands
an accurate and consistent measure of the risk present in each possible option. The main
di↵erence from a single period scenario to a multi-period one is that in the latter the risk
measure must incorporate the information structure contained at the evolution of the system
characteristics.

Among all risk measures the Multi-period Average Value-at-Risk, and similarly Multi-period
Value-at-Risk, emerges as one of the most prominent alternatives to risk analysis in financial
applications. In order to model the evolution of assets returns, representing the information
structure of the system, GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
models appear as a well established theory in the literature.

The main drawback of using such multi-period risk measures is the lack of an analytical
expression for its calculation. In this case Monte-Carlo methods are necessary to calculate the
measure, increasing the computational cost and sometimes making such approach unfeasible
for certain applications.

The present work proposes an alternative risk measure, called Multi-period Relative Value-
at-Risk (MRVaR), based on the Multi-period Value-at-Risk, in order to correct undesired fea-
tures of such risk functional, as further explained in Chapter 2. We then present an analytic
lower bound for the proposed multi-period risk measure when using GARCH models for the
return series, and we study the error incurred when one uses such analytic bound itself as a
risk metric.

Chapter 1 establishes the theoretical basis for the definition of the multi-period risk mea-
sures and GARCH models. Chapter 2 proposes a model for wealth allocation, proposes the
alternative risk measure (MRVaR) and develops the expression of the analytic bounds for such
risk measures. Chapter 3 introduces the agent’s wealth allocation problem using as risk met-
ric the analytic bound presented in Chapter 2. Chapter 4 analyses the error incurred when
using the approach implemented for the wealth allocation problem in Chapter 3. Chapter
5 applies the analytic lower bound for the MRVaR as risk metric in a case study of assets
from BM&FBovespa, in order to compare the e↵ectiveness of such method against a classical
approach.
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Chapter 1

Literature Review

Investment activities are intrinsically related to uncertainty, and the ultimate goal of every
investor is to obtain the best possible return from its allocations. Stock markets are a genuine
example of such situation, and risk plays a major role in this case. There are two main problems
to be faced when trying to deal with such markets. The first one is what is the appropriate
model for the prices time series? The second, how to characterize risk of an investment strategy?

Stochastic calculus and consequently stochastic di↵erential equations (SDE’s), with the pio-
neering work done by K. Itô, appear as a possible solution in the first case. Another possible
approach comes with the development of Autoregressive Conditional Heteroskedasticity models
with the work done by R. F. Engle[4] and T. Bollerslev[2]. The second problem was addressed
trough the development of functionals that incorporate desirable properties related to risk. As
examples of such risk measures we have the Value-at-Risk, and extensions like the Conditional
Value-at-Risk and the Multi-period Conditional Value-At-Risk, developed in works conducted
by R. T. Rockafellar, S. Uryasev [12] and others.

1.1 The Brownian Motion

The first description of a Brownian Motion was done in the context of physics, being motivated,
for example, through the observation of apparently random trajectories described by particles
of pollen in water by the botanist Robert Brown. A rigorous mathematical description was
latter developed and finds applications on several fields, ranging from di↵usion theory to finan-
cial modeling. The approach presented in the next sections follows closely the work done by R.
Korn and E. Korn[6], and also by S. E. Shreve [10, 11].

Let (⌦,F ,P) be a complete probability space. The following definitions we’ll be useful in
order to define the desired process.

Definition 1. A family {Ft}t2I of sub-�-algebras of F indexed by an ordered set I with Fs ⇢ Ft

for s < t, s, t 2 I, is called a filtration.

A filtration is used to represent the amount of information available until time t, and so if a
random variable Xt is Ft-measurable, we are able to determine its value from the information
available at time t. We generally take I = (0,+1) or I = (0, T ).

Definition 2. A set {(Xt,Ft)}t2I consisting of a filtration and a family of Rn-valued random
variables with Xt being Ft-measurable is called a stochastic process with filtration {Ft}t2I .

3
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Every process {Xt}t2I has associated to it a canonical, or natural, filtration given by
{FX

t }t2I , where FX
t = �{Xs | s  t, s 2 I}.

Definition 3. The real-valued stochastic process {Wt}t�0 with continuous sample paths and

1. W0=0, P-a.s.

2. Wt �Ws ⇠ N(0, t� s) for 0  s < t.

3. Wt �Ws independent of Wu �Wr for 0  r  u  s < t.

is called the one-dimensional Brownian motion.

By an n-dimensional Brownian motion we mean theRn-valued processW (t) = (W1(t), ...,Wn(t))
with each component Wt being a Brownian motion. The existence of a Brownian motion as a
stochastic process has to be shown, although we shall not do so here. The reader can find a con-
struction based on weak convergence and approximation by random walks in P. Billingsley[1].

1.2 The Itô Integral

We describe in this section a new kind of integral, called Itô Integral, motivated by the fact
that the one-dimensional Brownian motion is nowhere di↵erentiable and does not have finite
variation over any non-empty open interval, and so the object

R t

0 Xs(w)dWs(w) cannot be de-
rived from an extension of the Lebesgue-Stieltjes integral.

Let (⌦,F ,P) be a complete probability space equipped with a filtration {Ft}t2[0,1] and a
Brownian motion {(Wt,Ft)}t2[0,1].

Definition 4. A stochastic process {Xt}t2[0,T ] is called a simple process if there exists real
numbers 0 = t0 < t1 < ... < tp = T, p 2 N and bounded random variables �i : ⌦ ! R, i =
0, 1, ..., p with �0 F0-measurable and �i Fi�1-measurable for i = 1, ..., p, such that Xt(w) has
the following representation:

Xt(w) = �0(w) · 10(t) +
pX

i=1

�i(w) · 1(ti�1,ti](t)

for each w 2 ⌦.

Definition 5. For a simple process {Xt}t2[0,T ] the stochastic integral I(X) for t 2 [0, T ] is
defined by

It(X) =

Z t

0

XsdWs =
X

1ip

�i(Wti^t �Wti�1^t)

So that on each interval where X is constant the increments of the Brownian motion on that
interval are multiplied with the corresponding value of �i.

Theorem 1. Let X = {Xt}t2[0,T ] be a simple process. Then we have

1. {(It(X))}t2[0,T ] is a continuous martingale with respect to Ft

2. E
✓R t

0 XsdWs

◆2

= E
✓R t

0 X
2
sds

◆
for t 2 [0, T ]
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3. E
✓
sup0tT |

R t

0 XsdWs |
◆2

 4E
✓R T

0 X2
sds

◆

Our goal is to extend the defined integral for a broader class of functions, not only simple
ones, using density properties and the second statement from the previous theorem, which gives
us some sort of norm preserving relation. In order to do so we’ll need the following definition

Definition 6. Let {(Xt,Ft)}t2[0,1) be a stochastic process. This stochastic process will be called
progressively measurable if for all t � 0 the mapping

[0, t]⇥ ⌦ ! Rn

(s, w) ! Xs(w)

is B([0, t])⌦ Ft-B(Rn)-measurable.

We are now able to state our extension of the defined integral to a broader class of processes,
namely to

L2[0, T ] =

⇢
{(Xt,Ft)}t2[0,T ]real-valued stochastic process | {Xt}t progressively

measurable, E
✓Z T

0

X2
t dt

◆
< 1

�

Using the fact that simple processes are dense in L2[0, T ] and that the defined integral acts
as an isometry for this class of functions, we are able to obtain a Cauchy sequence on the
space of stochastic integrals. It can then be proved that such space is complete and that the
obtained limit is independent of the sequence of simple processes that approximates the element
of L2[0, T ]. We summarize this process in the following theorem

Theorem 2. There exist a unique linear mapping J from L2[0, T ] into the space of continuous
martingales on [0,T] with respect to {Ft}t2[0,T ] satisfying

1. If X is a simple process then P
✓
Jt(X) = It(X) for all t 2 [0, T ]

◆
= 1

2. E
✓
Jt(X)2

◆
= E

✓R t

0 X
2
sds

◆
(Itô Isometry)

We conclude with a formal definition of the integral

Definition 7. For X 2 L2[0, T ] and J as in Theorem 2 we let

Z t

0

XsdWs = Jt(X)

and call this the stochastic integral or the Itô integral of X with respect to W.
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1.3 The Itô Formula and Stochastic Di↵erential Equa-
tions (SDE’s)

In this section we aim to establish the basic tool for defining and solving Stochastic Di↵erential
Equations, the Itô Formula. It is based on the Itô Integral defined on the previous section and
we will develop it for a larger class of processes called Itô processes.

Let (⌦,F ,P) be a complete probability space equipped with a filtration {Ft}t2[0,1] and a
Brownian motion {(Wt,Ft)}t2[0,1].

Definition 8. Let {(Wt,Ft)}t2[0,1) be an m-dimensional Brownian motion, m 2 N. Then

1. {(X(t),Ft)}t2[0,1) is called a real-valued Itô process if for all t � 0 it admits the repre-
sentation

X(t) = X(0) +

Z t

0

K(s)ds+
mX

j=1

Z t

0

Hj(s)dWj(s), P� a.s.,

where, X(0) is a F0-measurable, and {K(t)}t2[0,1) and {H(t)}t2[0,1) are progressively
measurable processes with

Z t

0

| K(s) | ds < 1, P� a.s.

Z t

0

H2
i (s)ds < 1, P� a.s.

for all t � 0, i = 1, ...,m.

2. An n-dimensional Itô process X = (X1, .., Xn) consists of a vector with components being
real-valued Itô processes.

The di↵erential notation for the above definition is given by

dXt = Ktdt+HtdWt

Definition 9. Let X and Y be two real-valued Itô processes with representations

X(t) = X(0) +

Z t

0

K(s)ds+
mX

j=1

Z t

0

Hj(s)dWj(s)

Y (t) = Y (0) +

Z t

0

L(s)ds+
mX

j=1

Z t

0

Mj(s)dWj(s)

Then,

[X, Y ]t =
mX

i=1

Z t

0

Hi(s)Mi(s)ds

is called the quadratic covariation of X and Y. In particular, [X]t = [X,X]t is called the
quadratic variation of X.

For a real-valued Itô process, and Y a real-valued, progressively measurable process we set
Z t

0

Y (s)dX(s) =

Z t

0

Y (s)K(s)ds+

Z t

0

Y (s)H(s)dW (s)

if all the integrals on the right-hand side are defined.
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Theorem 3. Let X(t) = (X1(t), ..., Xn(t)) be an n-dimensional Itô process with

Xi(t) = Xi(0) +

Z t

0

Ki(s)ds+
mX

j=1

Z t

0

Hij(s)dWj(s), i = 1, ..., n

where W (t) = (W1(t), ...,Wmt) is an m-dimensional Brownian motion. Further let f : [0,1)⇥
Rn ! R be a C1,2-function, i.e. f is continuous, continuously di↵erentiable with respect to the
first variable and twice continuously di↵erentiable with respect to the last n variables. We then
have

f(t,X1(t), ..., Xn(t)) = f(0, X1(0), ..., Xn(0)) +

Z t

0

ft(s,X1(s), ..., Xn(s))ds

+
nX

i=1

Z t

0

fxi(s,X1(s), ..., Xn(s))dXi(s)

+
1

2

nX

i,j=1

Z t

0

fxixj(s,X1(s), ..., Xn(s))d[Xi, Xj](s) (1.3.1)

We present below a simple example where the above formula can be used to derive a stock
price equation.

Example 1. Applying Equation (1.3.1) in di↵erential form to the case of a one dimensional
Brownian motion, a single Itô process and f(t,X(t)) = ln(X(t)) we obtain

d(ln(X(t))) =
1

X(t)
dX(t)� 1

2

d[X]t
X2(t)

Assuming that X(t) satisfies the following Stochastic Di↵erential Equation (SDE)

dX(t) = X(t)


(µ+

�2

2
)dt+ �dW (t)

�

We may conclude that
d(ln(X(t))) = µdt+ �dW (t)

Exponentiating gives us the following final expression

X(t) = X(0) exp(µt+ �W (t))

1.4 Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH)

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are used as an
econometric tool to deal with processes in which volatility evolves over time. Such models
are able to predict future volatility and serve as a tool for accessing risk and uncertainty on
financial models.

Regarding the behavior of single assets and portfolios such models are adequate for model-
ing their volatility and correlation structure. An important feature captured by such models is
that volatility tends to cluster in periods of high volatility and low volatility[4]. Such processes
are defined below, and are further used to model logarithmic returns of stocks.
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Definition 10. Let "t be a real discrete-time stochastic process and Ft the �-algebra representing
the information available until time t. The GARCH(p,q) process is given by

"t | Ft�1 ⇠ N(0, �2
t ) (1.4.1)

�2
t = K +

pX

i=1

�i�
2
t�1 +

qX

j=1

↵j"
2
t�j (1.4.2)

Where p � 0, q > 0, K > 0, �i � 0 and ↵i � 0.

Notice that the GARCH models allow not only the influence of past sample variances but
also of lagged conditional variances. Let A(x) =

Pp
i=1 �ix

i�1 and B(x) =
Pq

j=1 ↵jx
j�1. The

following theorem describes the stationarity of the GARCH process:

Theorem 4. The GARCH(p,q) process defined by Equations (1.4.1) and (1.4.2) satisfies E["t] =
0, limt!1 var("t) = K(1�A(1)�B(1))�1 and cov("t, "j) = 0, t 6= s if, and only if, A(1)+B(1) <
1.

1.5 Risk Measures

Risk measures were developed aiming to treat uncertainty and quantify risk. Several desirable
properties of risk functionals were defined over time so that one could reach a reasonable tool
capable of consistently comparing possible investment decisions. The approach presented in
the next sections follows the work done by G. C. Pflug[9, 8].

Consider a non-atomic probability space (⌦,F ,P) and Y a linear space of random variables
defined over it. A probability functional is a function D : Y ! R. If Y1, Y2 2 Y have te same
distribution function, we say that Y1 is a version of Y2, and we write Y1 , Y2.

Definition 11. A probability functional D in a non-atomic probability space (⌦,F ,P) is called
version-independent if Y1 , Y2 implies D(Y1) = D(Y2).

Version-independent functionals are generally defined for families of probability distribu-
tions. When one uses such functionals, it can always be assumed w.l.o.g. that the random
variables are defined in [0, 1] with Lebesgue measure.

Definition 12. Given a functional D : Y ! R, we say that D is

1. Translation-equivariant if D(Y + c) = D(Y ) + c, 8Y 2 Y , c 2 R

2. Translation-invariant if D(Y + c) = D(Y ), 8Y 2 Y , c 2 R

Definition 13. Given a functional D : Y ! R, we say that D is

1. Homogeneous if D(cY ) = cD(Y ), 8Y 2 Y , c 2 R

2. Positively homogeneous if D(cY ) = cD(Y ), 8Y 2 Y , c 2 R+

Definition 14. Given a functional D : Y ! R, we say that D is

1. Additive if D(Y1 + Y2) = D(Y1) +D(Y2), 8Y1, Y2 2 Y

2. Subadditive if D(Y1 + Y2)  D(Y1) +D(Y2), 8Y1, Y2 2 Y
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3. Superadditive if D(Y1 + Y2) � D(Y1) +D(Y2), 8Y1, Y2 2 Y

Definition 15. Given a functional D : Y ! R, we say that D is

1. Concave if D(�Y1 + (1� �)Y2) � �D(Y1) + (1� �)D(Y2), 8Y1, Y2 2 Y ,� 2 [0, 1]

2. Convex if D(�Y1 + (1� �)Y2)  �D(Y1) + (1� �)D(Y2), 8Y1, Y2 2 Y ,� 2 [0, 1]

Definition 16. Given a functional D : Y ! R, we say that D is monotonic if Y1  Y2 P� a.s.
implies D(Y1)  DY2.

Definition 17. A function R : Y ! R is a risk measure if it is translation-equivariant, concave
and monotonic.

1.5.1 Value-at-Risk

The Value-at-Risk is the most known risk metric for financial applications, and its widespread
use is due to its simplicity and objective interpretation. It gives an investor information about
the worst case losses of his portfolio, and so serves as a metric for investment optimization.
It has all basic characteristics of a risk measure, although it fails when one looks forward for
investment diversification, which is implied by concavity of the risk functional.

Definition 18. The Value-at-Risk of level ↵ 2 (0, 1) corresponds to the ↵-quantile of the profit
distribution

VaR↵(Y ) = G�1(↵). (1.5.1)

Where G is the profit distribution function.

Proposition 1. The following properties are satisfied by the Value-at-Risk:

1. Translation-equivariance

2. Positive homogeneity

3. Monotonicity

Example 2. Suppose Y ⇠ N(0, 1) and let �(u) = 1p
2⇡

R u

�1 exp(��v2

2 )dv. Using Definition 18
we have

VaR↵(Y ) = ��1(↵). (1.5.2)

Example 3. Suppose Y ⇠ N(µ, �2). Using Equation (1.5.2) and Proposition 1 we have

VaR↵(Y ) = µ+ ���1(↵). (1.5.3)

1.5.2 Average Value-at-Risk

The Average Value-at-Risk was developed in order to overcome the VaR lack of concavity,
allowing for the risk metric to incorporate the desirable property of portfolio diversification.
Objectively, instead of furnishing the ↵-quantile portfolio return, it gives the average among
all returns bellow such threshold.

Definition 19. The Average Value-at-Risk of level ↵ 2 (0, 1) is defined as

AVaR↵(X1) =
1

↵

Z ↵

0

G�1(u)du. (1.5.4)
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Using Equation (1.5.1), (1.5.4) can be seen as an average of the VaR↵⇤ for ↵⇤ 2 (0,↵).

Proposition 2. The following properties are satisfied by the Average Value-at-Risk:

1. Translation-equivariance

2. Positive homogeneity

3. Concavity

4. Monotonicity

Example 4. Suppose Y ⇠ N(0, 1). By (1.5.4) we have that 8↵ 2 (0, 12)

AVaR↵(Y ) =
1

↵

Z ↵

0

��1(↵)

= � 1

↵
p
2⇡

exp

"
�1

2
(��1(↵))2

#
. (1.5.5)

Example 5. Suppose Y ⇠ N(µ, �2) and ↵ 2 (0, 12). Using Equation (1.5.5) and Proposition 2
we can conclude that

AVaR↵(X1) = µ� �

↵
p
2⇡

exp

"
�1

2
(��1(↵))2

#
. (1.5.6)

Remark 1. Let Y ⇠ N(0, 1). The table below shows the Value-at-Risk and the Average-Value-
at-Risk for di↵erent values of ↵:

↵ VaR↵ AVaR↵

0.001 -3.09 -3.37
0.010 -2.32 -2.66
0.050 -1.64 -2.06
0.100 -1.28 -1.75
0.500 0.00 -0.80
0.900 1.28 -0.20

1.6 Conditional Risk Measures

In the case where the probability functionals are version-independent they can be applied
to conditional distributions, leading to conditional risk measures. A central conditional risk
metric is the Conditional Value-at-Risk, which improves the VaR characteristics and is suitable
for applications with GARCH models, as was done by S. Ma↵ra[3]. Let (⌦,F ,P) be a non-
atomic probability space and F1 a �-algebra contained in F . Let Y = Lp(⌦,F ,P) and Y1 =
Lp(⌦,F1,P), p 2 [1,1), so that Y1 ✓ Y .

Definition 20. A function R : Y ! Y1 is a conditional risk measure if it satisfies the following
properties P-a.e.:

1. Predictable translation-equivariance: R(Y + Y1) = R(Y ) + Y1, 8Y 2 Y , 8Y1 2 Y1

2. Concavity: R(�Y + (1� �)X) � �R(Y ) + (1� �)R(X), 8Y,X 2 Y
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3. Monotonicity: X  Y implies R(X)  R(Y ), 8Y,X 2 Y

Definition 21. The AV aR↵(Y | F1) is defined in L1(F) by:

E(AVaR↵(Y | F)�B) = inf(E(Y Z) : 0  Z  1

↵
�B,E(Z | F) = �B) (1.6.1)

Let G1 be the ensemble of the distribution functions over R with the Lipschitz metric, i.e.:

G1 =

⇢
G(·) : G is monotonic, continuous to the right with lim

x!1
G(x) = 1 and lim

x!�1
G(x) = 0

�

dL(G1, G2) = sup

⇢
|
Z

fdG1 �
Z

fdG2 |: sup
u

| f(u) | +sup
u 6=v

| f(u)� f(v)

u� v
| 1

�

Remark 2. (G1, dL) is separable. If Y is a random variable in (⌦,F ,P) and F1 is a subsigma-
algebra of F , the conditional probabilities G(u | F1) = P(Y  u | F1) are well defined a.e.
Consider such functions over the rationals Q. Possibly excluding a measure zero set,all maps
u ! G(u | F1); u 2 Q are monotonic and can be extended to R by monotonicity and right
continuity. In this way the following map can be seen as a random function F1-measurable
taking values on G1.

G(· | F1) (1.6.2)

So each pair (Y,F) induces a probability measure over G1.

Definition 22. Let R be a risk measure. The conditional risk measure R : Y ! Y1 is called
version-independent if R(Y | F1) can be written as a function of the distribution induced by
(Y,F1) over G1, P-a.s.

Proposition 3. The Conditional Average Value-at-Risk is version-independent.

Proposition 4. The following properties are a direct consequence of Proposition 2 and the
definition of the Conditional Average Value-at-Risk:

1. If F1 = {;,⌦} then AVaR↵(Y | F1) = AVaR(Y )

2. For all 0  ⇤  1 F1-measurable,
AVaR↵(⇤Y1 + (1� ⇤)Y2 | F1) � ⇤AVaR↵(Y1 | F1) + (1� ⇤)AVaR↵(Y2 | F1)

3. For all ⇤ F1-measurable, bounded, AVaR↵(⇤Y | F1) = ⇤AVaR↵(Y | F1)

4. If Y1  Y2 then AVaR↵(Y1 | F1)  AVaR↵(Y2 | F1)

5. If Y 2 F1 then AVaR↵(Y | F1) = Y

6. If F1 ⇢ F2 then,
AVaR↵(Y | F1)  E[AVaR↵(Y | F2) | F1]  AVaR↵(E(Y | F2) | F1)



12 CHAPTER 1. LITERATURE REVIEW

1.7 Multi-period Risk Measures

Let (⌦, T ,P) be a probability space and F = (F0,F1, ...,FT ) a filtration in F , where F0 =
{;,⌦}. Let Y be the space of the stochastic processes describing the wealth variation of the
agent, Y = (Y1, ..., YT ), adapted to F , i.e., Yt is Ft-measurable, 8t 2 {1, ..., T}. A multi-period
probability functional is a map (Y ,F) ! R.

Definition 23. A probability functional R(Y ;F) is a multi-period risk measure if it satisfies
the following properties:

1. Information monotonicity: if Ft ⇢ F 0
t , 8t then R(Y ;F)  R(Y ;F 0

)

2. Predictable translation-equivariance: R(Y1, ..., Yt+Ct, ..., YT ;F) = E(Ct)+R(Y ;F), 8Ct Ft�1-
measurable.

3. Concavity: Y ! R(Y ;F) is concave.

4. Monotonicity: if Y 1
t  Y 2

t P� a.e. 8t, then R(Y 1;F)  R(Y 2;F)

5. Positive homogeneity

Definition 24. Let Y = (Y1, ..., YT ) be an integrable stochastic process. For a given sequence of
constants c = (c1, ..., cT ), ↵ = (↵1, ...,↵T ) 2 (0, 1)T and a filtration F = (F0, ...,FT ), we define
the Multi-period Average Value-at-Risk by:

MAVaR↵,c(Y,F) =
TX

t=1

ctE[AVaR↵t(Yt | Ft�1)] (1.7.1)

Definition 25. Let Y = (Y1, ..., YT ) be an integrable stochastic process. For a given sequence
of constants c = (c1, ..., cT ), probabilities ↵ = (↵1, ...,↵T ) and a filtration F = (F0, ...,FT ), we
define the Multi-period Value-at-Risk by:

MVaR↵,c(Y,F) =
TX

t=1

ctE[VaR↵t(Yt | Ft�1)] (1.7.2)



Chapter 2

Wealth Allocation and Asset Prices
Model

Dealing with financial time series and wealth allocation problems requires an adequate model-
ing of the price series and of the trading environment. In this chapter we will present a general
multi-period model for wealth allocation problems and analyze the risk behavior of allocation
strategies based on di↵erent risk measures and models for the time series of assets returns.

We notice that classical risk measures allow, in the multi-period case, a misleading increase
in risk values caused by wealth growth. In order to solve this problem we propose an alterna-
tive risk metric, one that takes into account only inter-period relative changes in wealth.

2.1 The Wealth Allocation Model

The investment horizon is of T periods and there are M assets on the agent’s portfolio. The
price of the asset m at time t is given by pm(t), and the prices at t = 0 are known. Let
p(t) = (p1(t), ..., pM(t)), 8t = 0, .., T, be the price vector at time t. The logarithmic returns are
defined as

rm(t) = ln

 
pm(t+ 1)

pm(t)

!
⇡ pm(t+ 1)

pm(t)
� 1. (2.1.1)

The approximation used is justified by the order of magnitude of the returns. The agent’s
wealth process is represented by W (t), 8t = 0, ..., T . We define X(t) = W (t) �W (t � 1), 8t 2
{1, ..., T}, as the wealth variation of the agent when going from period t � 1 to period t.
The filtration used is the one generated by the sequence of prices, i.e., F = (F0, ...,FT ) with
Ft = �(p(0), ..., p(t)), 8t 2 {0, ..., T}.

The agent decides in t = 0 the proportion of wealth that will be allocated at each asset
in every subsequent period. Formaly, the decision variables are s(t) = (s1(t), ..., sM(t)) 2
[0, 1]M ,

PM
m=1 sm(t) = 1, 8t 2 {0, ..., T � 1}.

13
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Using such definitions we can write 8t � 1

W (t) = W (t� 1)
MX

m=1

sm(t� 1)
pm(t)

pm(t� 1)
(2.1.2)

= W (0)
j=t�1Y

j=0

"
1 +

MX

m=1

sm(j)

 
pm(j + 1)

pm(j)
� 1

!#

⇡ W (0)
j=t�1Y

j=0

"
1 +

MX

m=1

sm(j)rm(j)

#
. (2.1.3)

Using Equation (2.1.1), Equation (2.1.2) and the definition of X(t) we have

X(t) = W (t)�W (t� 1)

= W (t� 1)
MX

m=1

sm(t� 1)

"
pm(t)

pm(t� 1)
� 1

#

⇡ W (t� 1)
MX

m=1

sm(t� 1)rm(t� 1). (2.1.4)

2.2 Geometric Brownian Motion

Suppose the price series are modeled with Geometric Brownian Motions, i.e., there are µm, �m, 8m =
1, ...,M, such that the following stochastic di↵erential equations (SDE’s) hold

dpm(t) =

 
µm +

�2
m

2

!
pm(t)dt+ �mpm(t)dBm(t). (2.2.1)

The solutions of the SDE’s are given by

ln

 
pm(t)

pm(0)

!
= µmt+ �mBm(t), 8m = 1, ...,M. (2.2.2)

Using Equation (2.1.1) we obtain the following relation

rm(t) = µm + �m[Bm(t+ 1)� Bm(t)]

= µm + �m�Bm(t). (2.2.3)

Let ⌃ be the covariance matrix of the above Brownian processes. Since we are dealing with
Gaussian random variables, the VaR becomes a concave risk functional like the AVaR, and we
will adopt it as our standard risk measure from now on. The multi-period risk measure is given
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by

MVaRT
↵,c(X,F) =

TX

t=1

ctE[VaR↵(X(t) | Ft�1)]

=
TX

t=1

ctE
"
VaR↵

 
W (t� 1)

MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#

=
TX

t=1

ctE
"
W (t� 1)VaR↵

 
MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#

=
TX

t=1

ct

"
s(t� 1)µ⇤ +

p
v(t� 1)⌃v(t� 1)⇤�↵

#
E[W (t� 1)]. (2.2.4)

Where v(t� 1) = (s1(t� 1)�1, ..., sM(t� 1)�M), 8t = 1, ..., T , and �↵ stands for the one-period
VaR of level ↵. The penultimate equality comes from the fact that W (t�1) is Ft�1-measurable
and the last equality comes from the properties of the Value-at-Risk and the following lemma:

Lemma 1. Let r 2 RM be a Gaussian vector, r ⇠ N(µ,⌃), and s 2 RM . Then s · r 2 R is a
Gaussian random variable with parameters (s · µ, s · ⌃s).

Using the properties of the Brownian motion we can still develop the term E[W (t � 1)] in
the following way

E[W (t� 1)] = E
"
W (0)

t�2Y

j=0


1 +

MX

m=1

sm(j)rm(j)

�#

= W (0)E
"

t�2Y

j=0


1 +

MX

m=1

sm(j)(µm + �m�Bm(j))

�#

= W (0)
t�2Y

j=0

E
"
1 +

MX

m=1

sm(j)(µm + �m�Bm(j))

#

= W (0)
t�2Y

j=0

"
1 +

MX

m=1

sm(j)µm

#
, 8t � 2.

where the next to last equality comes from the independence of the increments of the Brownian
motion. To conclude, the risk measure is given by

MVaRT
↵,c(X,F) = W (0)

"
c1

 
s(0)µ⇤ +

p
v(0)⌃v(0)⇤�↵

!
+

TX

t=2

j=t�2Y

j=0

ct

 
1 + · · ·

· · ·+ s(j)µ⇤

! 
s(t� 1)µ⇤ +

p
v(t� 1)⌃v(t� 1)⇤�↵

!#
. (2.2.5)

Example 6. Let us calculate the multi-period risk measure in the case where the agent does
not change the portfolio composition, i.e., s(t) = s 2 RM+, 8t = 0, ..., T � 1. In this case we
have v(t) = v 2 RM+, 8t = 0, ..., T � 1. In order to simplify the notation define

�↵,s
µ,�,⌃ = sµ⇤ +

p
v(t� 1)⌃v(t� 1)⇤�↵.

The scalars (ct)Tt=1 are chosen as ct = ( 1
⇢T
)t, 8t = 1, ..., T, where ⇢T is defined so that

PT
t=1 ct =

1. The following lemma will be useful.
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Lemma 2. Using the same definitions, the sequence (⇢T )1T=1 is strictly increasing, ⇢1 = 1 and
limT!1 ⇢T = 2. Also, ⇢T+1

T � 2⇢TT + 1 = 0, 8T � 1.

Using Equation (2.2.5) we can write

MVaRT
↵,c(X,F) = W (0)

�↵,s
µ,�,⌃

⇢T

TX

t=1

"
1 + s · µ

⇢T

#t�1

(2.2.6)

= W (0)�↵,s
µ,�,⌃

(1 + s · µ)T � ⇢TT
(1 + s · µ)⇢TT � ⇢T+1

T

. (2.2.7)

Assuming | s · µ |< 1 the Equation (2.2.7) provides us a long-term risk measure, given by

MVaR1
↵,c(X,F) = lim

T!1
AMVaRT

↵,c(X,F)

=
W (0)�↵,s

µ,�,⌃

1� s · µ . (2.2.8)

In order to better comprehend how such risk measure behaves in this situation we can write,
using Equation (2.2.6), the ratio between the short-term and long-term measures

MVaR1
↵,c(X,F)

MVaR1
↵,c(X,F)

=
1

1� s · µ. (2.2.9)

The graphics below show the relation between the short-term and long-term risk measures,
for M = 1 and di↵erent values of µ and �.

Figure 2.1: Risk measures on the short and long term.

Notice that for values of µ near 1 the long-term risk measure grows rapidly, and its sign
depends on the short-term risk measure. Although Equation (2.1.1) assumes small returns, the
graphics above indicate an undesired e↵ect that is reinforced by returns of higher magnitude.
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Example 7. Let us use the results obtained in Example 6 to illustrate numerically how the
risk measure acts in this case. Suppose the agent must decide between assets A and B to invest
his R$100,00. The parameters µA, �A, µB, �B are known. The risk present in each option is
calculated based on the short-term and long-term risk measures, having the V aR of level 10%
as the basic risk measure, so that �↵ = �1.28. The short-term risk measure is given by

MVaR1
↵,c(X,F) = 100(µ� 1.28�).

We shall calculate the risk measures in the following cases:

µA, �A µB, �B

1 0.2,0.117 0.1,0.039
2 0.1,0.234 0.05,0.195
3 0.05,0.195 -0.05,0.117
4 -0.05,0.117 -0.1,0.078

The results are given by the following table:

Short-term (A) Short-term (B) Long-term (A) Long-term (B)
1 5 5 6.25 5.55
2 -20 -20 -22.22 -21.05
3 -20 -20 -21.05 -19.04
4 -20 -20 -19.04 -18.18

Suppose the objective of the agent is to maximize his expected wealth, subject to a certain
short-term (or long-term) risk threshold. The analysis for each one of the four cases is presented
below:

1. In the first case, the risk measure from asset A is greater than, or equal to, the one of asset
B, both in the short and long term. The agent chooses asset A to make his investment.
This pattern always happens when the short-term risk measure is positive.

2. In the second and fourth cases, the short-term risk measures agree, but for the long-term
asset A becomes riskier than asset B. Depending on the long-term threshold the agent
chooses to invest in B instead of A. This pattern always happens when the shod-term risk
measure is negative and both µ’s are positive or negative.

3. In the third case, the short-term risk measures agree, but for the long-term asset A becomes
riskier than asset B. Depending on the long-term threshold the agent chooses to invest
in B instead of A. Notice that the two previous assertions contrast with the fact that
µA > 0 > µB! This pattern always happens when the short-term risk measure is negative
and µA > 0 > µB.

The results of the previous example show that the classic risk measures may present some
pathological behavior when used to calculate optimal allocations. Such pathological cases occur
because the value of the wealth process (W (t))Tt=0 has a strong influence on the risk measure,
as can be observed when analyzing the following term of Equation (2.2.4)

E
"
W (t� 1)VaR↵

 
MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#
.
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Such influence can be better understood in the particular case where the assets follow a Geo-
metric Brownian Motion. Notice that in Equation (2.2.6) such influence becomes more clear
due to the following relation

E[W (t)] = W (0)(1 + sµ⇤)t.

When sµ⇤ > 0 , this factor grows with t, but in the case of a GBM, if �↵,s
µ,�,⌃ is negative (or

VaR↵(
PM

m=1 sm(t�1)rm(t�1) | Ft�1)  0 in the general case), this will imply that the portfolio
is becoming riskier. But this e↵ect is taking into account not only worsening conditions for
volatilities and mean returns (in the case of a GBM the conditional volatilities and mean returns
are constant), but also the wealth growth is being interpreted as a factor that increases risk.

Suppose that the risk restriction to which the agent is subject to makes reference to an
absolute fall on the wealth level, like the loss of R$1,00 in the case where R$100,00 is being
invested. In this case the risk measure MAVaR is adequate to the kind of restriction faced by
the agent. Now suppose that the restriction makes reference to relative falls on the wealth level,
like the fall of 1% over the portfolio value. In this case the MAVaR becomes less appropriate,
because if the portfolio value rises to R$1000,00, the increase of the risk measure from R$1,00
to R$10,00 should not be seen as a restriction.

We propose the following solution to this problem. Define an alternative multi-period risk
metric that consider relative, and not absolute, inter-period variations on wealth. Such defini-
tion is given by:

Definition 26. Following the notation from Section 2.2, we define the Multi-period Relative
Value-at-Risk by

MRVaRT
↵,c(X,F) =

TX

t=1

ctE
"
VaR↵(X(t) | Ft�1)

W (t� 1)

#
. (2.2.10)

Example 8. Revisiting the case of the Brownian Geometric Motion using the new risk measure
we obtain

MRVaRT
↵,c(X,F) =

TX

t=1

ctE
"
VaR↵(X(t) | Ft�1)

W (t� 1)

#

=
TX

t=1

ctE
"
W (t� 1)

W (t� 1)
VaR↵

 
MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#

=
TX

t=1

ct

"
s(t� 1)µ⇤ +

p
v(t� 1)⌃v(t� 1)⇤�↵

#
. (2.2.11)

If the agent will not shift his portfolio we get

MRVaRT
↵,c(X,F) =

TX

t=1

ct�
↵,s
µ,�,⌃

= �↵,s
µ,�,⌃

TX

t=1

ct

= �↵,s
µ,�,⌃. (2.2.12)
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where we used the notation from Example 6 and assumed
PT

t=1 ct = 1. Notice that the risk
measure is independent of the number of periods, what is a direct consequence from the fact
that the conditional means and volatilities do not change over time.
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2.3 The GARCH(1,1) Case

Suppose the logarithmic returns satisfy the following equations 8m = 1, ...,M

rm(t) = µm + �m(t)zm(t) (2.3.1)

and

�m(t)
2 = km + �m�m(t� 1)2 + ↵m�m(t� 1)2zm(t� 1)2 (2.3.2)

where the parameters µm, km, �m,↵m and �m(0) are known 8m = 1, ...,M , and F = (F0, ...,FT )
is the filtration representing the information available until a certain time period. The random
variables (zm(t) | Ft)

T�1
t=0 are i.i.d standard Gaussians and the covariance matrix of (zm(t) |

Ft)Mm=1, 8t = 1, ..., T � 1, is given by ⌃. The multi-period risk measure is given by

MVaRT
↵,c(X,F) =

TX

t=1

ctE[VaR↵(X(t) | Ft�1)]

=
TX

t=1

ctE
"
VaR↵

 
W (t� 1)

MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#

=
TX

t=1

ctE
"
W (t� 1)VaR↵

 
MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#

=
TX

t=1

ctE
"
W (t� 1)

 
s(t� 1)µ⇤ +

p
v(t� 1)⌃v(t� 1)⇤�↵

!#
(2.3.3)

where v(t�1) = (s1(t�1)�1(t�1), ..., sM(t�1)�M(t�1)), 8t = 1, ..., T . The analytical solution
for Equation (2.3.3) is overly complex, and the computation of such measure can be done by
Monte-Carlo methods. Calculating the MRVaR

MRVaRT
↵,c(X,F) =

TX

t=1

ctE
"
VaR↵(X(t) | Ft�1)

W (t� 1)

#

=
TX

t=1

ctE
"
VaR↵

 
MX

m=1

sm(t� 1)rm(t� 1) | Ft�1

!#

=
TX

t=1

ct

"
s(t� 1)µ⇤ +�↵E

 
p
v(t� 1)⌃v(t� 1)⇤

!#
. (2.3.4)

Equation (2.3.2) allows us to write the following relation 8m = 1, ...,M

�m(t)
2 = km

"
1 +

t�1X

j=1

t�1Y

i=t�j

�m(i)

#
+ �m(0)

2
t�1Y

i=0

�m(i). (2.3.5)
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where �m(t) = �m + ↵mzm(t)
2, 8t. Suppose that the innovations are independent, i.e., ⌃ = Id.

Then we can rewrite Equation (2.3.4) as

MRVaRT
↵,c(X,F) =

TX

t=1

ct

"
s(t� 1)µ⇤ +�↵E

 
p
v(t� 1)⌃v(t� 1)⇤

!#
(2.3.6)

=
TX

t=1

ct

"
s(t� 1)µ⇤ +�↵E

 vuut
MX

m=1

sm(t� 1)2�m(t� 1)2

!#

�
TX

t=1

ct

"
s(t� 1)µ⇤ +�↵

 
MX

m=1

sm(t� 1)2E
✓
�m(t� 1)2

◆! 1
2
#
.

(2.3.7)

where the last step comes from Jensen’s inequality and the fact that �↵  0, 8↵  0.5. From
Equation (2.3.5) we obtain

E[�m(t)
2] = km

"
1 +

t�1X

j=1

t�1Y

i=t�j

E[�m(i)]

#
+ �m(0)

2
t�1Y

i=0

E[�m(i)]

= km

"
1 +

t�1X

j=1

t�1Y

i=t�j

E

E
✓
�m(i) | Fi

◆�#
+ �m(0)

2
t�1Y

i=0

E

E
✓
�m(i) | Fi

◆�

= km

"
1 +

t�1X

j=1

t�1Y

i=t�j

(�m + ↵m)

#
+ �m(0)

2
t�1Y

i=0

(�m + ↵m)

= km
1� (�m + ↵m)t

1� �m � ↵m

+ �m(0)
2(�m + ↵m)

t. (2.3.8)

Using Equation (2.3.8) we can rewrite Equation (2.3.7) as

MRVaRT
↵,c(X,F) �

TX

t=1

ct

"
s(t� 1)µ⇤

+�↵

 
MX

m=1

sm(t� 1)2

km

1� (�m + ↵m)t�1

1� �m � ↵m

+�m(0)
2(�m + ↵m)

t�1

�! 1
2
#
. (2.3.9)

We can still obtain an upper bound for the MRV aR using the fact that
p
x � ⇢x, 8x 2 (0, 1

⇢2
).

Suppose that the term under the radical has order of magnitude ⌧ 1
⇢2
, or is bounded by such

value. We may then apply the first inequality to Equation (2.3.6) and use Equation (2.3.8) to
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obtain

MRVaRT
↵,c(X,F) =

TX

t=1

ct

"
s(t� 1)µ⇤ +�↵E

 
p

v(t� 1)⌃v(t� 1)⇤

!#


TX

t=1

ct

"
s(t� 1)µ⇤ + ⇢�↵E

 
v(t� 1)⌃v(t� 1)⇤

!#

=
TX

t=1

ct

"
s(t� 1)µ⇤

+⇢�↵

 
MX

m=1

sm(t� 1)2

km

1� (�m + ↵m)t�1

1� �m � ↵m

+�m(0)
2(�m + ↵m)

t�1

�!#
. (2.3.10)

Example 9. Let us do the calculation of the lower bound in Equation 2.3.9 in the case where
there is an unique asset on the portfolio, so that s(t) = 1, 8t. For k, �,↵, �0 2 R+,↵+ � = ✓ <
1, t � 1, define

f(k, ✓, �0, t) = k
1� ✓t�1

1� ✓
+ �0

2✓t�1

= �0
2 + (1� ✓t�1)(

k

1� ✓
� �0

2).

We can then rewrite Equation (2.3.9) and Equation (2.3.10) as

TX

t=1

ct


µ+ ⇢�↵f(k, ✓, �0, t)

�
� MRVaRT

↵,c(X,F) �
TX

t=1

ct


µ+�↵f(k, ✓, �0, t)

1
2

�
. (2.3.11)

The calibration of ⇢ can be done by observing the general behavior of the assets returns and
volatilities, but in general upper bounds have little importance when dealing with risk and we
usually will arrive in poor estimates. The terms µ+�↵f(k, ✓, �0, t)

1
2 are lower bounds for the

expected value of the relative risk measure in period t. So the analysis of such sequence tells
how the risk evolves over time. The following relation tells how the risk bound behaves on the
long term

lim
t!1

✓
µ+�↵f(k, ✓, �0, t)

1
2

◆
= µ+�↵

✓
k

1� ✓

◆ 1
2

.

Let us do the calculation of such terms, with level ↵ = 10%, for the following assets:

µ �0 ✓ k
Asset 1 0.1 0.2 0.7 0.003
Asset 2 0.1 0.2 0.85 0.0015
Asset 3 0.1 0.2 0.7 0.027
Asset 4 0.1 0.2 0.85 0.0135

The results are present on the graphic below:
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Figure 2.2: E↵ects of a GARCH(1,1) parameters over the dynamics of the risk measure bound

The short-term risk bound is the same for all assets, and the long-term one coincides for
assets 1,2 and 3,4. Parameter ✓ sets the speed of convergence of the risk bound to its long-term
value, and such convergence in this case is always monotonic.
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2.4 The GARCH(2,2) Case

Suppose the logarithmic returns satisfy the following equations 8m 2 {1, ...,M}

rm(t) = µm + �m(t)zm(t) (2.4.1)

and

�m(t)
2 = km +

2X

j=1

�m(t� j)2(�m(j) + ↵m(j)zm(t� j)2) (2.4.2)

where the parameters µm, km, �m(1), �m(2),↵m(1),↵m(2), �m(�1) and �m(0) are known 8m 2
{1, ...,M}. For simplicity we assume zm(�1) = 1, 8m 2 {1, ...,M}. The random variables
(zm(t) | Ft)

T�1
t=0 are i.i.d standard Gaussians and the correlation matrix of

(zm(t) | Ft)Mm=1, 8t = 1, ..., T � 1, is given by ⌃. The multiperiod risk measure is given by
Equation (2.3.3). The recurrence from Equation (2.4.2) allows us to write 8t 2 {2, ..., T � 1}

E[�m(t)
2] = E


km +

2X

j=1

�m(t� j)2(�m(j) + ↵m(j)zm(t� j)2)

�

= E
"
km +

2X

j=1

E

�m(t� j)2(�m(j) + ↵m(j)zm(t� j)2) | Ft�j

�#

= E
"
km +

2X

j=1

�m(t� j)2
✓
�m(j) + ↵m(j)E


zm(t� j)2 | Ft�j

�◆#

= E
"
km +

2X

j=1

�m(t� j)2
✓
�m(j) + ↵m(j)

◆#

= km +
2X

j=1

E[�m(t� j)2]

✓
�m(j) + ↵m(j)

◆
. (2.4.3)

Notice that such equation remains valid for t=1, since we are assuming zm(�1) = 1, 8m. This
second order linear recurrence gives us the following expression for E[�(t,m)2]

E[�m(t)
2] =

�t+1
m+ � �t+1

m�
�m+ � �m�

�m(0)
2 +

�m+�
t+1
m� � �t+1

m+�m�

�m+ � �m�
�m(�1)2

� km
1� (✓m(1) + ✓m(2))

✓
�t+1
m+ � �t+1

m� + �m+�
t+1
m� � �t+1

m+�m�

�m+ � �m�
� 1

◆
. (2.4.4)

where ✓m(j) = �m(j) + ↵m(j), j 2 {1, 2}, and

�m+ =
✓m(1) +

p
✓m(1)2 + 4✓m(2)

2
,

�m� =
✓m(1)�

p
✓m(1)2 + 4✓m(2)

2
.

Using the results from Equation (2.4.4) in Equation (2.3.7) and Equation (2.3.10) we obtain
the bounds for the MRVaR.
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Example 10. Let us do the calculus of the bound from Equations (2.3.7) and (2.3.10) in the
case where there is only one asset in the portfolio, so that s(t) = 1, 8t. For k, �1, �2,↵1,↵2, �0, ��1 2
R+, ✓1 = �1 + ↵1, ✓2 = �2 + ↵2 and ✓1 + ✓2 < 1, define

f(k, ✓1, ✓2, �0, ��1, t) =
�t
+ � �t

�
�+ � ��

�0
2 +

�+�
t
� � �t

+��

�+ � ��
��1

2 + · · ·

· · ·+ k

1� (✓1 + ✓2)

✓
1�

�t
+ � �t

� + �+�
t
� � �t

+��

�+ � ��

◆
.

where �+ =
✓1+

p
✓21+4✓2
2 ,�� =

✓1�
p

✓21+4✓2
2 . Using this definition we can rewrite the inequalities

as

MRVaRT
↵,c(X,F) 

TX

t=1

ct


µ+ ⇢�↵f(k, ✓1, ✓2, �0, ��1, t)

�
,

MRVaRT
↵,c(X,F) �

TX

t=1

ct


µ+�↵f(k, ✓1, ✓2, �0, ��1, t)

1
2

�
.

Following the same analysis as in Example 8, notice that ✓1, ✓2 > 0, ✓1 + ✓2 < 1 imply �+,�� 2
(�1, 1), and this allows us to calculate the long-term behavior of the risk bound, which is given
by

lim
t!1

✓
µ+�↵f(k, ✓, �0, t)

1
2

◆
= µ+�↵

✓
k

1� (✓1 + ✓2)

◆ 1
2

.

Let us calculate such factors for ↵ = 10% and the following assets:

µ k ✓1 ✓2 �0 ��1

Asset 1 0.01 0.0004 0.05 0.9 0.15 0.05
Asset 2 0.01 0.0004 0.05 0.65 0.15 0.05
Asset 3 0.01 0.0004 0.475 0.475 0.15 0.05
Asset 4 0.01 0.0004 0.9 0.05 0.15 0.05
Asset 5 0.01 0.0004 0.05 0.9 0.15 0.25
Asset 6 0.01 0.004 0.05 0.9 0.15 0.05

The results are presented on the figure below:
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Figure 2.3: E↵ects of a GARCH(2,2) parameters over the dynamics of the risk measure bound.

• Graphic A reflects the influence of the factor ✓1 + ✓2, which is bigger for Asset 1 than for
Asset 2, in the dynamics of the risk measure bound. Such factor is directly proportional
to the speed convergence of the risk measure bound to its long-term value.

• Graphic B reflects the influence of the factors ✓1, ✓2, holding ✓1 + ✓2 constant, in the
dynamics of the risk measure bound. The relevance of ✓1 increases when we move from
Asset 1 to Asset 3, and from Asset 3 to Asset 4. The e↵ect is the reduction of he
oscillatory behavior of the risk bound.

• Graphic C reflects the influence of the factor ��1 in the dynamics of the risk measure
bound. Assets 1 and 5 have the same long-term value for the risk bound, but the first has
��1 < �0, while the second has ��1 > �0. The e↵ect is the reversion of the oscillation
direction.

• Graphic D reflects the influence of K in the dynamics of the risk measure bound. The
e↵ect is the change on the long-term risk bound value.



2.5. FURTHER AUTOREGRESSIVE MODELS 27

2.5 Further Autoregressive Models

The methodology developed in Sections 2.3 and 2.4 can be extended to other autoregressive
models with conditional heteroskedasticity, in the cases where the recurrence is given over the
variance �(t)2. The following are examples of such models:

ARCH(q) The model is described by

r(t) = µ+ �(t)z(t)

�(t)2 = k +
qX

j=1

↵(j)�(t� j)2z(t� j)2

GARCH(p,q) The model is described by

r(t) = µ+ �(t)z(t)

�(t)2 = k +
qX

j=1

�(j)�(t� j)2 +
qX

j=1

↵(j)�(t� j)2z(t� j)2

NGARCH(1) The model is described by

r(t) = µ+ �(t)z(t)

�(t)2 = k + ��(t� 1)2 + ↵�(t� 1)2(z(t� 1)� �)2

GJR-GARCH The model is described by

r(t) = µ+ �(t)z(t)

�(t)2 = k + �(t� 1)2

� + ↵z(t� 1)2 + �z(t� 1)2�x>0(z(t� 1))

�

Equations (2.3.3) and (2.3.4) can be used to obtain in each case, via Monte-Carlo methods,
the multi-period risk measures. The bound in Equation (2.3.7) also remains valid given certain
changes on the coe�cients of each model. The precision of such bounds is analyzed in Chapter
4, for a GARCH(1,1) and a GARCH(2,2) model.

In the first two models the values of p and q determine the order of the recurrence that
defines the variances, and a direct consequence is the richness and detailing of risk bound
behavior. The counterpart is the increase of complexity for the calculation of the measure,
which not always is converted on an increased accuracy.

For the last two models the similarity of the recurrence over the volatilities with a GARCH(1,1)
model allows us to use an analogous argument to calculate the bound of Equation (2.3.7). The
respective values of the ✓ parameters in each case are

✓NGARCH = � + ↵(1 + �2)

✓GJR�GARCH = � + ↵ +
�

2

Examples of autoregressive conditional heteroskedasticity models in which the recurrence is not
over �(t)2 include EGARCH and TGARCH models, where the recurrence is over ln(�(t)2) and
�(t), respectively. The bound of Equation (2.3.7) is no longer valid in this case.
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Chapter 3

Portfolio Optimization

Using the notation defined on Chapter 2 we can describe the agent’s wealth allocation problem
as

max
s2(SM

+ )T�1
E(WT ) s.t. R(s) > 0,L(s) > 0. (3.0.1)

Where the agent chooses his allocation strategy for each period on the M-dimensional simplex,
aiming to maximize his expected final wealth and subject to risk and liquidity constraints,
represented by R(s) > 0 e L(s) > 0, respectively.

3.1 Returns modeled by a GARCH(1,1)

Suppose the series logarithmic returns follows a GARCH(1,1) process, given by Equations
(2.3.1) and (2.3.2). The term E(WT ) can be written, assuming equality in Equation (2.1.3), as
a function of s 2 (SM

+ )T�1
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"
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We used that �(t,m) is Ft-measurable and z(t,m) ? Ft. Using Equation (3.1.1) we can
conclude that

E(WT ) = W (0)
T�1Y

t=0

✓
1 +

MX

m=1

sm(t)µm

◆
. (3.1.2)

Using Equation (3.1.2), we can rewrite Equation (3.0.1) as

maxs2(SM
+ )T�1W (0)

T�1Y

t=0

✓
1 +

MX

m=1

sm(t)µ(m)

◆
s.t. R(s) > 0,L(s) > 0. (3.1.3)

The example below illustrates the dynamics of the agent’s optimal portfolio over time. To
simplify our notation let us define

f(t,m) =


km

1� (�m + ↵m)t�1

1� �m � ↵m

+ �m(0)
2(�m + ↵m)

t�1

�
.

Example 11. From the analysis in Chapter 2 we know that 8t 2 {1, ..., T}

E
"
VaR↵(X(t) | Ft�1)

W (t� 1)

#
�

MX

m=1

sm(t� 1)µm +�↵

✓ MX

m=1

sm(t� 1)2f(t,m)

◆ 1
2

.

Suppose the agent uses such lower bounds as the risk measures in his optimization problem.
Suppose also that the agent faces liquidity constraints so that the percentual variation of the
wealth invested in a certain asset between t and t + 1 can’t be bigger than ⇢ 2 (0, 1). So the
restrictions R and L in Equation (3.1.3) can be written as

MX

m=1

sm(t� 1)µm +�↵

✓ MX

m=1

sm(t� 1)2f(t,m)

◆ 1
2

� ��, 8t 2 {1, .., T}, (3.1.4)

and

| sm(t)� sm(t� 1) | ⇢, 8m 2 {1, ...,M}, 8t 2 {1, ..., T � 1}. (3.1.5)

Parameter � represents the biggest negative percentual variation between two periods the agent
is willing to face (having as reference the ↵-quantile). So Equations (3.1.3), (3.1.4) and (3.1.5)
fully characterize the wealth allocation problem. The table below gives the parameters of the
assets present in the agent’s portfolio:

µ �0 ✓ k
Asset 1 0.05 0.0781 0.8 0.00274
Asset 2 0.25 0.3906 0.7 0.03708
Asset 3 0.3 0.4296 0.95 0.03052
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The graphic below shows the evolution of the risk present in each asset:

Figure 3.1: Dynamic of the risk measure.

The graphics below show the evolution of the optimal portfolio composition for ⇢ = 0.1 and
� = 0.05, 0.1, 0.15 and 0.2, respectively.

Figure 3.2: Dynamic of the optimal portfolio.

The increase of the risk present in the asset with the largest mean return is reflected on the
decreasing share of wealth invested on such asset on the long run. Notice that the composition
of the optimal portfolio converges to its long-term configuration together with the risk measures.
Also notice that once we relax the risk constraints the share of wealth invested on the asset with
the largest return/risk increases.
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3.2 Returns modeled by a GARCH(2,2)

Suppose the series logarithmic returns follows a GARCH(2,2) process, given by Equations
(2.4.1) and (2.4.2). Equation (3.1.2) remains valid since �m(t) is still Ft-measurable and zm(t) ?
Ft. So Equation (3.1.3) continues to describe the agent’s wealth allocation problem. The
following example illustrates the dynamic of the agent’s optimal portfolio. To simplify the
notation let’s define

g(t,m) =
�t
m+ � �t

m�
�m+ � �m�

�m(0)
2 +
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m� � �t
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�m+ � �m�

◆
. (3.2.1)

Where ✓m(j) = �m(j)+↵m(j), j 2 {1, 2}, e �m+ =
✓m(1)+

p
✓m(1)2+4✓m(2)

2 ,�m� =
✓m(1)�

p
✓m(1)2+4✓m(2)

2 .

Example 12. Suppose that the agent from Example 10 decides to use a GARCH(2,2) to model
his returns series, and sets his optimization problem as before. In this case the risk restrictions
the agent faces are given by

MX

m=1

s(t� 1,m)µ(m) +�↵

✓ MX

m=1

s(t� 1,m)2g(t,m)

◆ 1
2

� ��, 8t 2 {1, .., T}. (3.2.2)

The table below gives the parameters of the assets present on the agent’s portfolio:

µ k ✓1 ✓2 �0 ��1

Ativo 1 0.05 0.00274 0.05 0.75 0.0781 0.01
Ativo 2 0.25 0.03708 0.05 0.75 0.3906 0.01
Ativo 3 0.4 0.03052 0.05 0.75 0.4296 0.6

The graphic below show the evolution of the risk present in each asset:

Figure 3.3: Dynamic of the risk measure.
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Notice that the risk present on Asset 1 and Asset 3 oscillates, and this is more evident
on Asset 3. Also, the risk in Asset 2 converges monotonically to its long-term value. The
graphics below illustrate the evolution of the optimal portfolio composition for ⇢ = 0.1 and
� = 0.05, 0.1, 0.15 and 0.2, respectively.

Figure 3.4: E↵ect of � over the dynamics of the optimal allocation.

The similarity between the inferior and superior contours in each graphic, and also between
di↵erent graphics, indicate that the oscillatory behavior of the portfolio composition is due,
predominantly, to Asset 3. Notice that the oscillations are mitigated on the long run, since the
risk measures converge. Also notice that once the risk threshold is relaxed, the share of wealth
invested on the riskier asset increases.

The graphics below illustrate the evolution of the optimal portfolio composition for � = 0.05
and ⇢ = 0.1, 0.05, 0.025 and 0.01, respectively.
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Figure 3.5: E↵ect of ⇢ over the dynamic of the optimal allocation.

There are two e↵ects that must be highlighted on the figure above:

1. The stronger liquidity constraints generate a reduction on the oscillatory behavior of the
optimal portoflio

2. Once the liquidity constraints becomes stronger the agent is forced to shift the short-term
portfolio composition so that the risk constraint can be satisfied on the long-term.



Chapter 4

Numerical Analysis

The analytic expressions for the bounds found in Chapter 2 and the wealth allocation problems
in Chapter 3 show how simpler the risk management and computation of optimal strategies
become when one uses such bounds as measures of risk, since Monte-Carlo methods are no
longer needed for scenario simulations. On the other hand, when one uses such bound as risk
measures it may be incurring in great rentability losses, since the risk of the portfolios can be
significantly overestimated. The present chapter uses Monte-Carlo methods to calculate the
error between the risk bounds and the risk measures, in order to determine if the approach
proposed in the examples of Chapter 3 is valid.

4.1 Error Analysis for the GARCH(1,1) Model

To calculate the error incurred when one uses the terms of Equation (2.3.7) as a risk measure
for each subsequent period, we will study the the case with a single asset on the portfolio, as in
Example 9. The next figure shows the evolution of the MRVaR and the analytic lower bound
for the reference parameters described below.

Figure 4.1: Risk measure and analytic lower bound for a GARCH(1,1)

35



36 CHAPTER 4. NUMERICAL ANALYSIS

The graphics below show the evolution of the error between the risk measure, calculated by
Monte-Carlo methods with 500.000 scenarios, and the analytic bound.

The reference values where chosen so that they would better represent the values regularly
found on the case studies of Chapter 5. In each case one of the reference parameters, given on
the table below, was changed, except on the case of ↵ and �, where such parameters must also
satisfy ↵ + � = 0.99.

µ �0 ↵ � k
Asset 1 0 0.025 0.14 0.85 0.0001

Figure 4.2: Error evolution with a GARCH(1,1)
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Figure 4.3: Relative error evolution with a GARCH(1,1)

For comparison purposes, the V aR10% in the first period is -0.032 for the reference param-
eters. Considering the 20 days windows, the following points must be highlighted:

1. The absolute and relative errors increase with the number of periods

2. Raising K and �0 makes the absolute error increase on the long-term. The reduction of
�, which corresponds to an increase in ↵, makes the absolute error bigger.

3. Raising parameters �0 and � increases the relative error on the long-term. Raising K
decreases the relative error.

4. In Figure 4.2, Graphic A shows that even with a substantial increase on the value of K
the order of the error is maintained at 10�2.

5. In Figure 4.2, Graphic B shows that the error evolves roughly linearly with time and is
proportional to the value of �0.

6. In Figure 4.2, Graphic C shows that parameter � is the only capable of a substantial
increase on the order of magnitude of the error term, reaching 10�1. Such increase is
inversely proportional to the value of �
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4.2 Error Analysis for the GARCH(2,2) Model

Using the same methodology as in the previous section, consider the following reference param-
eters

µ k ↵1 �1 ↵2 �2 �0 ��1

Asset 1 0 0.0001 0.1 0.39 0.1 0.39 0.025 0.025

The figure describing the evolution of the risk measure and the analytic lower bound for such
reference parameters is presented below

Figure 4.4: Risk measure and analytic lower bound for a GARCH(2,2)

Notice that in this case the error tends to a non-zero stationary value. In the case of a
GARCH(2,2) we have several other possible behaviors for the risk measure, although most are
unlikely from happening, and we present here one of them, where the error is not monotonically
increasing in the number of periods:

Figure 4.5: Risk measure and analytic lower bound for an unconventional GARCH(2,2)

The values of ↵, � must satisfy ↵1 + �1 + ↵2 + �2 < 1. In the last two graphics the values
0.03 and 0.25 were assigned to the pair ↵, � that was not being analyzed. The results are given
in the graphics below:
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Figure 4.6: Error evolution with a GARCH(2,2)

The following points must be highlighted on Figure 4.3:

1. There is a fall on the absolute error when going from the second to the third period, but
after this the error increases with the number of periods.

2. The absolute error is inversely proportional to the value of K. So we may also state that
the absolute error is inversely proportional to the long-term risk value.

3. The absolute error is directly proportional to the value of �0.

4. The absolute error is inversely proportional to the value of �1.

5. The absolute error is inversely proportional to the value of �2. Such factor has a smaller
influence over the error than �1. This can be noticed if one compares the error magnitudes
in each case.
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Figure 4.7: Relative error evolution with a GARCH(2,2)

The following points must be highlighted:

1. The relative error decreases from the second to the third period, but then it becomes
monotonically increasing with the number of periods.

2. The relative error is inversely proportional to the value of K,�1 e �2.

3. The relative error is directly proportional to the value of �0.

4. There is an oscillatory behavior on the risk measure, that increases when �2 decreases.

5. The variation of the parameters � generates the largest relative errors.



Chapter 5

Case Study

Following the same lines from Chapter 3 and 4, it is fair to question how adequate, in practical
terms, Equation (2.3.7) is to be used as a risk measure. Using as standard risk measure the
VaR10% we know that, by definition, in 10% of all days the portfolio returns will be lower than
the value of the risk measure. Rigorously, when considering the terms of Equation (2.3.7) with
t � 2 what we are actually estimating is the mean of such V aR10%, and we can expect some
distortion on this 10% level, when comparing the portfolio returns with the risk measure over a
longer horizon. To perform the analysis we selected 10 stocks from BM&FBOVESPA. They are:

PETR3, VALE3, EMBR3, ELET3, SUZB5, CSNA3, CRUZ3, ABEV3, BBDC3, BBAS3

Such group of assets was chosen taking into account diversity over the volume of daily transac-
tions and branch of the companies. The historical series analyzed refer to three periods of the
Brazilian capital markets:

1. From 02/01/1999 to 12/30/2002: Internet crisis period, in 1999-2000, and 09/11, in 2001.

2. From 01/02/2007 to 12/30/2009: 2008 financial crisis.

3. From 01/02/2013 to 11/28/2014: Recent period.

The models used for the logarithmic returns series were GARCH(1,1) and GARCH(2,2). The
standard risk measure is the VaR10%. The models were calibrated using the previous 1000
trading days, and, according to the framework proposed in Chapter 2, opening prices were
used. The following figures show the evolution of the estimated coe�cients over time, and
the analysis in Chapter 4 can be used as a reference to estimate errors magnitudes. The only
exception is EMBR3, that was omitted from such graphics, since its coe�cients values have
a completely di↵erent behavior and scale.The tables in Sections 5.1 and 5.2 show the number
of times the risk measure was greater then the actual return of the asset. The graphics in
Sections 5.3 and 5.4 also show such frequencies at each subsequent period, and we introduce a
third approach in order to compare the e�ciency of our proposed method. The red line in each
graphic represents the frequency of times the risk measure was above the actual value of the
asset return, using as risk measure for all subsequent periods the VaR10% of the current period.
All historical data were treated according to the methodology proposed by Meucci[7].
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Figure 5.1: Evolution of the GARCH(1,1) parameters during the first period

Notice that the average returns assumed both positive and negative values during this period
and volatility remained close to 0.02. Also, coe�cients � and ↵ remained close to 0.8 and 0.2,
respectively.
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Figure 5.2: Evolution of the GARCH(1,1) parameters during the second period

Notice that the average returns remained positive during this period, although assuming
smaller values than the ones reached on the previous period, and volatility remained close to
0.02, reaching its peak during the 2008 year. Also, coe�cients � and ↵ remained close to 0.8
and 0.2, respectively.
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Figure 5.3: Evolution of the GARCH(1,1) parameters during the third period

Notice that the average returns assumed both positive and negative values during this
period, with a negative trend over time, and volatility remained close to 0.02, although it
presented several peaks during this period. Also, coe�cients � and ↵ remained close to 0.9 and
0.1, respectively.
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Figure 5.4: Evolution of the GARCH(2,2) parameters during the first period

Notice that the average returns assumed both positive and negative values during this period
and volatility remained close to 0.02. Also, coe�cients � and ↵ did not have a clear trend during
this period.
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Figure 5.5: Evolution of the GARCH(2,2) parameters during the second period

Notice that the average returns remained positive during this period and volatility remained
close to 0.02, reaching its peak during the 2008 year. Also, coe�cients ↵1 and ↵2 remained
close to 0.1 and 0.05, respectively, and � did not have a clear trend during this period.
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Figure 5.6: Evolution of the GARCH(2,2) parameters during the third period

Notice that the average returns assumed both positive and negative values during this
period, with a negative trend over time, and volatility remained close to 0.02, although it
presented several peaks during this period. Also, coe�cients ↵1 and ↵2 remained close to 0.1
and 0.1, respectively, and � did not have a clear trend during this period..
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5.1 Results tables for a GARCH(1,1) model

The tables below show the percentage of times the risk metric proposed by Equation (2.3.7)
(with a 10%-VaR) remained above the actual return value from the price series.

t=1 t=2 t=3 t=4 t=5 t=10 t=25 t=50
PETR3 07.32% 07.01% 06.70% 05.98% 05.88% 04.12% 03.20% 02.68%
VALE3 06.08% 05.77% 05.88% 05.46% 05.15% 04.33% 03.61% 02.58%
EMBR3 01.24% 00.82% 00.62% 00.41% 00.41% 00.21% 00.21% 00.21%
ELET3 10.62% 10.21% 09.79% 09.48% 08.87% 08.04% 06.91% 06.19%
SUZB5 06.39% 06.29% 06.08% 06.08% 06.19% 06.08% 06.08% 05.98%
CSNA3 06.80% 06.08% 05.98% 06.91% 06.29% 05.57% 05.26% 05.36%
CRUZ3 07.94% 08.25% 08.04% 07.84% 07.22% 07.11% 05.05% 04.64%
ABEV3 08.14% 07.94% 07.11% 07.01% 06.39% 05.57% 03.61% 03.09%
BBDC3 07.53% 07.42% 06.91% 05.98% 05.67% 05.46% 05.15% 04.64%
BBAS3 07.42% 07.22% 06.91% 06.80% 06.39% 07.22% 06.60% 06.19%

Table 5.1: First period results

t=1 t=2 t=3 t=4 t=5 t=10 t=25 t=50
PETR3 12.03% 11.62% 11.76% 11.22% 11.62% 11.49% 12.43% 12.57%
VALE3 11.62% 11.76% 11.76% 11.35% 11.35% 12.16% 12.70% 12.97%
EMBR3 09.19% 08.92% 09.05% 09.32% 09.46% 09.86% 08.92% 10.54%
ELET3 07.97% 07.84% 07.97% 07.43% 07.30% 06.62% 06.89% 06.49%
SUZB5 11.89% 11.76% 11.49% 11.22% 11.89% 12.43% 13.11% 13.78%
CSNA3 10.00% 10.14% 10.00% 10.68% 10.54% 11.08% 11.35% 10.95%
CRUZ3 09.59% 09.73% 09.86% 10.14% 10.27% 10.14% 11.08% 11.08%
ABEV3 11.22% 11.08% 11.49% 11.22% 11.62% 12.03% 12.97% 13.65%
BBDC3 11.08% 10.95% 11.22% 11.08% 10.95% 11.08% 11.49% 11.35%
BBAS3 10.27% 10.14% 09.86% 09.73% 09.73% 10.41% 11.49% 11.76%

Table 5.2: Second period results

t=1 t=2 t=3 t=4 t=5 t=10 t=25 t=50
PETR3 10.30% 10.52% 10.52% 10.09% 10.09% 10.73% 11.16% 13.30%
VALE3 13.09% 13.09% 13.09% 12.45% 12.02% 12.66% 13.09% 13.95%
EMBR3 06.44% 06.44% 07.30% 07.08% 06.44% 06.44% 06.65% 07.08%
ELET3 08.37% 09.01% 08.58% 08.58% 08.80% 09.44% 08.37% 07.51%
SUZB5 07.94% 07.73% 08.15% 08.15% 08.15% 08.15% 06.87% 06.01%
CSNA3 09.66% 10.30% 10.30% 09.44% 09.44% 10.09% 11.59% 13.73%
CRUZ3 10.94% 11.16% 11.16% 10.73% 10.73% 11.59% 11.16% 11.37%
ABEV3 11.59% 11.59% 12.02% 12.02% 11.73% 12.02% 12.02% 11.16%
BBDC3 10.73% 10.52% 10.30% 10.30% 10.09% 10.73% 12.23% 12.88%
BBAS3 10.73% 10.09% 09.87% 10.73% 10.73% 10.94% 11.59% 13.30%

Table 5.3: Third period results
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5.2 Results tables for a GARCH(2,2) model

The tables below show the percentage of times the risk metric proposed by Equation (2.3.7)
(with a 10%-VaR) as remained above the actual return value from the price series.

t=1 t=2 t=3 t=4 t=5 t=10 t=25 t=50
PETR3 7.32% 06.70% 06.08% 05.77% 05.77% 04.12% 03.09% 02.68%
VALE3 06.08% 05.88% 05.88% 05.15% 05.15% 04.12% 03.51% 02.78%
EMBR3 01.13% 01.03% 00.82% 00.62% 00.62% 00.31% 00.21% 00.31%
ELET3 10.62% 09.79% 09.48% 09.18% 08.45% 07.53% 06.60% 05.98%
SUZB5 06.60% 06.08% 06.08% 06.08% 06.08% 06.08% 06.19% 06.08%
CSNA3 07.01% 05.77% 06.19% 06.70% 06.08% 05.77% 05.57% 05.46%
CRUZ3 08.25% 08.04% 08.14% 07.94% 07.63% 07.11% 05.05% 04.95%
ABEV3 07.84% 07.84% 07.11% 07.11% 06.49% 05.98% 04.33% 03.81%
BBDC3 08.04% 07.01% 06.91% 06.19% 05.77% 05.26% 05.05% 04.54%
BBAS3 07.42% 07.11% 07.01% 06.80% 06.39% 07.22% 06.39% 05.88%

Table 5.4: First period results

t=1 t=2 t=3 t=4 t=5 t=10 t=25 t=50
PETR3 11.62% 11.89% 11.76% 11.62% 11.62% 11.62% 12.70% 12.30%
VALE3 11.62% 11.89% 11.49% 11.49% 11.62% 12.30% 12.84% 13.11%
EMBR3 09.46% 09.05% 09.05% 09.19% 09.46% 09.86% 08.92% 10.68%
ELET3 07.84% 07.84% 07.84% 07.57% 07.57% 06.62% 07.03% 06.62%
SUZB5 12.03% 11.62% 11.35% 11.62% 12.16% 12.70% 13.51% 14.05%
CSNA3 10.27% 10.00% 10.14% 10.54% 10.54% 10.95% 11.35% 10.95%
CRUZ3 9.32% 09.73% 09.46% 10.00% 10.00% 10.14% 11.08% 11.08%
ABEV3 11.08% 11.49% 11.35% 11.49% 11.89% 12.16% 12.97% 13.78%
BBDC3 11.08% 11.22% 11.22% 10.95% 10.68% 11.22% 11.35% 11.22%
BBAS3 10.81% 10.14% 09.86% 10.00% 09.73% 10.95% 11.89% 11.76%

Table 5.5: Second period results

t=1 t=2 t=3 t=4 t=5 t=10 t=25 t=50
PETR3 11.16% 12.02% 12.02% 11.37% 11.37% 12.23% 12.45% 14.16%
VALE3 13.30% 12.45% 12.45% 12.02% 12.23% 12.88% 13.09% 13.95%
EMBR3 07.08% 06.87% 06.87% 06.44% 06.65% 06.44% 06.65% 07.08%
ELET3 08.37% 09.01% 08.58% 08.80% 09.23% 09.44% 08.58% 07.51%
SUZB5 08.15% 08.37% 08.15% 07.51% 07.73% 07.94% 06.87% 05.58%
CSNA3 09.87% 10.30% 10.30% 09.23% 09.44% 10.94% 11.59% 13.73%
CRUZ3 11.16% 11.16% 11.16% 10.73% 10.73% 11.80% 11.16% 11.37%
ABEV3 11.37% 11.80% 12.02% 12.02% 11.16% 11.80% 12.02% 11.16%
BBDC3 10.52% 10.52% 10.94% 10.94% 10.94% 10.94% 11.80% 12.88%
BBAS3 10.30% 10.30% 10.30% 10.94% 10.73% 10.94% 11.37% 13.30%

Table 5.6: Third period results
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5.3 Comparison between the proposed approach and a
standard one

In this section we perform the same analysis as the one presented in the previous two sections,
using a time window of 50 periods and presenting the values graphically. The graphics show
the percentage of times that the risk metric proposed by Equation (2.3.7) remained above the
actual return experienced by the portfolio in the subsequent periods. Such approach follows
the work done by C. Azevedo[5].

To be able to compare the accuracy of such risk metric we proposed as benchmark the fol-
lowing risk calculation approach. In the current date, always identified by t = 0, one calculates
a 10%-VaR using the previous 1000 trading days, which is the same information set as the
one used for calibrating the GARCH models, through a fitted Gaussian distribution, and in
order to forecast the risk of the portfolio in the fifty subsequent periods one simply repeats the
present value, considering that such distribution is stationary.

This benchmark is given by the red line presented in the graphics below. One would
expect the risk metric proposed by Equation (2.3.7) to remain closer to the 10% value then the
benchmark in most of the subsequent periods and assets studied. Since such metric is actually
a lower bound for the true one, one would also expect that, if far from the 10% value, it should
be smaller than this threshold.

Figure 5.7: Accuracy comparison for the first five assets in the first period



5.3. COMPARISON BETWEEN THE PROPOSED APPROACHANDA STANDARDONE51

Figure 5.8: Accuracy comparison for the last five assets in the first period

Figure 5.9: Accuracy comparison for the first five assets in the second period
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Figure 5.10: Accuracy comparison for the last five assets in the second period

Figure 5.11: Accuracy comparison for the first five assets in the third period



5.3. COMPARISON BETWEEN THE PROPOSED APPROACHANDA STANDARDONE53

Figure 5.12: Accuracy comparison for the last five assets in the third period

We may state the following conclusions from the tables and graphics presented:

1. The risk metric proposed by Equation (2.3.7) using both GARCH models performs better
than the benchmark in small horizons, t  10, for the majority of assets and periods
studied.

2. For longer horizons, t > 10, the first period presented most of the cases unfavorable for
the proposed risk metric. Such low accuracy when compared to the benchmark may be
due to the fact that the time window used for calibrating the model comprises the Russian
crisis, and also to the high volatility exhibited in such period.

3. Still analyzing longer horizons, t > 10, the second and third period showed that the
proposed risk metric was more accurate than the benchmark for the majority of the
assets studied.

4. In the first period risk was recurrently overestimated, as expected. In the second and
third periods, risk was recurrently underestimated, although most of the values remained
close to the 10% level.

5. The GARCH (2,2) and GARCH(1,1) models lead to a similar result, and in a few cases
the GARCH(2,2) furnishes a more accurate risk measure.
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Chapter 6

Conclusions

When dealing with multi-period risk one may conclude it is important to first analyze if the
application requires the use of absolute or relative wealth variations. The second case furnishes
a more suitable measure, although it may still rely on Monte Carlo methods for its calculation
depending on the model used for the asset’s price series.

The analytic lower bound proposed for the Multi-period Relative Value-at-Risk, which we
introduced in order to address specifically relative wealth fluctuations, can itself be used as a
risk metric, incurring in a relative error with order of magnitude of 1% for regular values of the
parameters of a GARCH model and a time windows of 30 periods.

Regarding the model used for the asset prices, we noticed that higher order GARCH mod-
els allow higher degrees of freedom for the risk metric, increasing the complexity of the risk
evolution. This is reflected, for example, in the composition of the optimal investment portfolio
and in the shape of the e�cient frontier curve.

Our case studies showed that when using the lower bound itself as a risk metric one obtain
a more accurate risk measure when compared to a classic Value-at-Risk approach. This in-
troduces an alternative to Monte-Carlo simulations which is specially valuable for applications
where the processing time is a limiting variable, so that an analytic metric, although still relying
on the calibration of a GARCH model, can be used to improve the risk calculation algorithm.
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