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Abstract

We propose a novel approach to measure risk in fixed income portfolios in terms of
value-at-risk (VaR). We use closed-form expressions for the vector of expected bond
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Siegel and Svensson models, to compute the parametric VaR of a portfolio composed of
fixed income securities. The proposed approach is very flexible as it can accommodate
alternative specifications to model the yield curve and also alternative specifications to
model the conditional heteroskedasticity in bond returns. An empirical application in-
volving a data set with 15 fixed income securities with different maturities indicate that
the proposed approach delivers very accurate VaR estimates.
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1 Introduction

Value-at-risk (VaR) is now established as one of the most important risk measures designed to

control and to manage market, which is the risk of losses on positions in equities, interest rate

related instruments, currencies and commodities due to adverse movements in market prices, and to

determine the amount of capital subject to regulatory control Berkowitz & O’Brien [2002], Santos

et al. [2012b]. Moreover, the Basel Accords also establish penalties for inadequate models and,

consequently, create incentives to pursue accurate VaR estimates. Therefore, VaR is a widely used

measure of market risk which has become one of the most important issues in risk management, [see

e.g. Jorion, 2006]. VaR may be defined as the worst scenario that is expected to occur with a large

probability for a portfolio given by a linear combination of the returns of the multivariate series. In

fact, value at risk measures the worst case loss (i.e. a threshold loss) at the given confidence level

and investment horizon conditions.

Not least because of the Basel accords, but also because of its popularity in the industry, VaR

has attracted a considerable amount of theoretical and applied research. A large number of recent

studies devoted attention to finding what is the most appropriate approach to model and forecast

the VaR of a portfolio of assets. This is generally conducted by backtesting a set of alternative

specifications and checking whether the number of VaR violations (i.e., instances in which the

actual portfolio loss exceeds the estimated VaR) is adequate; see, for instance, Christoffersen et al.

[2001], Berkowitz & O’Brien [2002], Brooks & Persand [2003], Giot & Laurent [2003], Giot & Laurent

[2004], Bauwens et al. [2006], Christoffersen [2009] and McAleer [2009], among many others. These

studies, in general, focus on two main approaches to obtain the portfolio VaR, which are either to

use a multivariate model for the system of individual asset returns, or a univariate specification to

model directly the portfolio returns. More recently, Santos et al. [2012a] compared both approaches

and conclude that the multivariate approach provides more accurate VaR estimates.

The vast majority of the existing evidence on VaR modeling focus on measuring the risk of

equity portfolios Giot & Laurent [2003], Engle & Manganelli [2004], Giot & Laurent [2004], Galeano

& Ausin [2010]. Surprisingly, the literature on VaR modeling of fixed income securities is very

thin. This seems to be an important gap in the literature, since fixed income securities play a

fundamental role in the composition of diversified portfolios held by institutional investors. One

explanation for the relative lack of literature on VaR modeling for bond portfolios is the relative

stability and low historical volatility of this asset class, which discouraged the use of sophisticated

methods to measure and to manage the market risk of interest rate related instruments. However,

this situation has been changing dramatically in recent years, even in markets where these assets

have low default probability Korn & Koziol [2006]. The recurrence of turbulent episodes in global

markets usually brings high volatility to bond prices, which increases the importance of adopting

appropriate techniques for measuring the risk of bond portfolios.

Under a multivariate setting in which a portfolio of assets is concerned, the VaR computation

usually requires two main ingredients, namely the vector of expected returns and their covariance
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matrix. For instance, Ferreira [2005] models the expected returns of the French and German short

rates using an autoregressive specification and alternative specifications to model the variances

and covariances of the two rates. Ferreira & Lopez [2005] consider the problem of modeling and

forecasting the VaR of an equally-weighted portfolio of short-term fixed-income positions in the U.S.

dollar, German deutschemark, and Japanese yen using alternative range of multivariate volatility

specifications. Alternatively, Vlaar [2000] considers the VaR computation of Dutch fixed-interest

securities with different maturities using historical simulation, Monte Carlo simulation methods

and a set of univariate volatility models, including univariate models with alternative distribution

assumptions.

In this paper, we amend the literature on VaR-based risk measurement by putting forward a

novel approach to measure risk in bond portfolios. Our approach significantly differs from the

existing ones as it is built upon a general class of well established term structure factor models

such as the dynamic version of the Nelson-Siegel model proposed by Diebold & Li [2006], and the

four factor version proposed by Svensson [1994]. These models have been successfully employed

in forecasting yields; see, for instance, De Pooter [2007], Diebold & Rudebusch [2011], Caldeira

et al. [2010b], and Rezende & Ferreira [2011] for an analysis of the predictive performance of factor

models for the term structure. Moreover, since it is based on factor specifications, our approach

is parsimonious and suitable for high-dimensional applications in which a large number of fixed

income securities is involved. Finally, we take a step further with respect to the existing evidence

and obtain closed-form expressions for the vector expected bond returns and for the covariance

matrix of bond returns based on yield curve models to compute the VaR of a bond portfolio. We

show that the proposed approach is very flexible as it can accommodate a wide range of alternative

specifications to model the yield curve and also alternative specifications to model the conditional

heteroskedasticity in bond returns.

We provide empirical evidence of the applicability of the proposed approach by considering

a data set similar to the one used by Almeida & Vicente [2009] which is composed of constant-

maturity future contracts of the Brazilian Inter Bank Deposit Future Contract (DI-futuro) which

is equivalent to a zero-coupon bond and is highly liquid (293 million contracts worth US$ 15 billion

traded in 2010). The market for DI-futuro contracts is one most liquid interest rate market in the

world. Many banks, insurance companies, and investors trade a large number of DI-futuro contracts

as an investment and hedging instrument, or to exploit an arbitrage opportunity. While DI-futuro

contracts are riskless if held to maturity, they have risk exposure from DI-futuro yield changes during

the investment horizon. Hence, the DI-futuro yield curve movements play an important role for risk

managers. Many institutions and specialized vendors such as Bloomberg, offers the Brazilian yield

curve data online for fixed income investors. The data set considered in the paper contains DI-futuro

contracts traded on the Brazilian Mercantile and Futures Exchange (BM&F) with fixed maturities of

1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 42 and 48 months. In order to obtain out-of-sample VaR

estimates for the 1%, 2.5%, and 5% levels for the equally-weighted portfolio, we use the dynamic

versions of the Nelson-Siegel and Svensson yield curve models to derive estimates for the vector of
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expected bond returns and alternative GARCH-type specifications to model the covariance matrix

of bond returns. A total of 16 alternative specifications is proposed and their performance evaluated

by means of a backtesting analysis based on independence, unconditional coverage and conditional

coverage tests of Christoffersen [1998]. These tests, though appropriate to evaluate the accuracy of

a single specification, can provide ambiguous decision about which candidate model is better; see

Santos et al. [2012a] for a discussion. Therefore, we enhance the traditional backtesting analysis

by using statistical tests designed to compare the predictive performance among several candidate

models applying the comparative predictive ability (CPA) test proposed by Giacomini & White

[2006]. Our results indicate that the proposed approach is able to deliver accurate VaR estimates

for all VaR levels considered in the paper. In particular, we find the VaR estimates obtained with

the Nelson-Siegel model with factor dynamics given by a vector autoregressive specification, and

conditional covariance matrix given by a dynamic conditional correlation (DCC-GARCH) model,

to be the most accurate among all specifications considered and for three VaR levels considered in

the paper.

The paper is organized as follows. Section 2 describes the factor models used for modeling the

term structure, as well as the econometric specification for the conditional heteroscedasticity of

the factors, and provides closed-form expression for the first two conditional moments. Section 2.4

presents the methodology for VaR computation whereas 3 discusses the estimation strategy. Section

4 presents an empirical applications. Finally, Section 5 brings concluding remarks.

2 Value-at-risk using yield curve models

In this section we consider the use of dynamic factor models for the yield curve to obtain VaR

estimates. Factor models for the term structure of interest rates allow us to obtain closed form

expressions for the expected yields, as well as for their conditional covariance matrix. From these

moments, we show how to compute the distribution of bond prices and bond returns, which will

later be used as an input to compute the VaR of a portfolio of bonds.

2.1 Dynamic factor models for the yield curve

We consider a set of time series of bond yields with N different maturities, τ1, . . . , τN . The yield at

time t of a security with maturity τi is denoted by yt(τi) for t = 1, . . . , T . The N × 1 vector of all

yields at time t is given by

yt(τ) = (yt(τ1) . . . yt(τN )) , t = 1, . . . , T.

The general specification of the dynamic factor model is given by

yt = Λ(λ)ft + εt, εt ∼ NID (0,Σt) , t = 1, . . . , T, (1)
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where Λ(λ) is the N×K matrix of factor loadings, ft is a K−dimensional stochastic process, εt is the

N × 1 vector of disturbances and Σt is an N ×N conditional covariance matrix of the disturbances.

As usual in the yield curve literature, we restrict the covariance matrix Σt to be diagonal [see

Diebold et al. , 2006]. This means that the covariance between the yields with different maturities

is explained solely by the common latent factor ft. The dynamic factors ft are modeled by the

following stochastic process

ft = µ+ Υft−1 + ηt, ηt ∼ NID (0,Ωt) , t = 1, . . . , T, (2)

where µ is a K × 1 vector of constants, Υ is the K ×K transition matrix, and Ωt is the conditional

covariance matrix of the disturbance vector ηt, which is independent of the vector of residuals εt ∀t.
The specification for ft is general. Therefore, it is possible to model its dynamics using a variety

of process [see Jungbacker & Koopman, 2008]. In modeling yield curves the usual specification for

ft is a vector autoregressive process of lag order 1 [Diebold et al. , 2006, Caldeira et al. , 2010b].

Next we present the factor models for the yield curve considered in this paper. The specifications

considered are the two main variants of the original formulation of the Nelson & Siegel [1987] factor

model, namely the dynamic Nelson-Siegel model proposed by Diebold & Li [2006], and the 4-factor

extension proposed by Svensson [1994]. The alternative Nelson-Siegel specifications considered are

all nested and can therefore be captured in the general formulation in (1) and (2) with different

restrictions imposed on the loading matrix Λ(λ).

2.1.1 Dynamic Nelson-Siegel model

The model of Nelson & Siegel [1987] and its extension by Svensson [1994] are widely used by central

banks and other market participants as a model for the term structure of interest rates [BIS, 2005,

Gimeno & Nave, 2009]. Academic studies have provided evidence that the model can also be a

valuable tool for forecasting the term structure, see for instance Diebold & Li [2006]. We look into

the two main variants of the model, namely the original formulation of Nelson & Siegel [1987] and

its extension by Svensson [1994]. Diebold & Li [2006] proposed a dynamic version of the Nelson &

Siegel [1987] exponential components framework. They obtained very good results in terms of out

of sample yield curve forecasting. The starting point is the following model for the continuously

compounded spot rate, with τ = T − t:

yt(τ) = β1 + β2

(
1− e−λτ
λτ

)
+ β3

(
1− e−λτ

λτ
− eλτ

)
, (3)

Equation (3) is the ”original” Nelson-Siefel yield curve specification, where ft = (β1, β2, β3) and λ

are parameters. Diebold & Li [2006] interpreted equation (4) in a dynamic fashion as a latent factor

model in which {β1, β2, β3} are time-varying level, slope, and curvature factors, and the terms that

multiply these factors are factor loadings:
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yt(τ) = β1t + β2t

(
1− e−λτ
λτ

)
+ β3t

(
1− e−λτ

λτ
− eλτ

)
. (4)

with yt(τ) denoting the continuously-compounded zero-coupon nominal yield at maturity τ , and

β1t, β2t, β3t and λt are (time-varying) parameters. Equation (4) is a dynamic version as parameters

are allowed to vary through time. Therefore the model is typically known as the Dynamic Nelson-

Siegel model (DNS).

2.1.2 The Svensson model

A number of authors have proposed extensions to the Nelson-Siegel model that enhance flexibility.

For example, Svensson [1994] included another exponential term, similar to the third, but with a

different decaying parameter. The Svensson dynamic four factor model is written as:

yt(τ) = β1t + β2t

(
1− e−λ1τ

λ1τ

)
+ β3t

(
1− e−λ1τ

λ1τ
− e−λ1τ

)
+ β4t

(
1− e−λ2τ

λ2τ
− e−λ2τ

)
. (5)

The fourth component can be interpreted as a second curvature. The Svensson model can fit

term structure shapes with more than one local maximum or minimum along the maturity spectrum.

2.2 Conditional covariance of the factor models for the yield curve

Forecasting volatility of interest rates remains an important challenge in financial econometrics.1 A

rich body of literature has shown that the volatility of the yield curve is, at least to some extent,

related to the shape of the yield curve. For instance, the volatility of interest rates is usually high

when interest rates are high and when the yield curve exhibits more curvature (see Cox et al. [1985],

Litterman et al. [1991], and Longstaff & Schwartz [1992], among others). This suggests that the

shape of the yield curve is a potentially useful instrument for forecasting volatility.

Despite the large amount of studies dealing with fitting and forecasting of the yield curve, only

recently attention has been turned to the presence of conditional heteroskedasticity in the term

structure of interest rates.2 In most cases, the models for the yield curve adopt the assumption of

constant volatility for all maturities. This issue is particularly important since the assumption of

constant interest rate volatility has important practical implications for risk management policies,

as it neglects the time-varying characteristic of interest rate risk. Furthermore, interest rate hedging

and arbitrage operations are also influenced by the presence of time-varying volatility as, in these

operations, it is often necessary to compensate for the market price of interest rate risk. Another

important implication is that in the presence of conditional volatilities the confidence intervals for

the forecasts obtained from these models will be possibly miscalculated in finite samples. Some

1See Poon & Granger [2003] and Andersen & Benzoni [2010] for recent surveys on volatility forecasting.
2See, for instance, Filipovic [2009], for a review on interest rate modeling.

6



recent approaches designed to overcome these limitations have been proposed proposed by Bianchi

et al. [2009], Haustsch & Ou [2012], Koopman et al. [2010] and Caldeira et al. [2010a].

In this paper, the effects of time-varying volatility are incorporated using a multivariate GARCH

specification proposed by Santos & Moura [2012]. To model Ωt, the conditional covariance matrix

of the factors in (2), alternative specifications can be considered, including not only multivariate

GARCH models but also multivariate stochastic volatility models [see Harvey et al. , 1994, Aguilar

& West, 2000, Chib et al. , 2009]. In this paper, we consider the dynamic conditional correlation

model (DCC) proposed by Engle [2002], which is given by:

Ωt = DtΨtDt, (6)

where Dt is a K × K diagonal matrix with diagonal elements given by hfkt , where hfkt is the

conditional variance of the k-th factor, and Ψt is a symmetric correlation matrix with elements ρij,t,

where ρii,t = 1, i, j = 1, . . . ,K. In the DCC model, the conditional correlation ρij,t is given by:

ρij,t =
qij,t√
qii,tqjj,t

, (7)

where qij,t, i, j = 1, . . . ,K, are the elements of the K ×K matrix Qt, which follows a GARCH-type

dynamics:

Qt = (1− α− β) Q̄+ αzt−1z
′
t−1 + βQt−1, (8)

where zft = (zf1t , . . . , zfkt) is the standardized vector of returns of the factors, whose elements

are zfit = fit/
√
hfit , Q̄ is the unconditional covariance matrix zt, α e β are non negative scalar

parameters satisfying α+ β < 1.

To model the conditional variance of the measurement errors εt in (1), we assume that Σt is a

diagonal matrix with diagonal elements given by htεi , where htεi is the conditional variance of εi.

Moreover, a procedure similar to Cappiello et al. [2006] is applied and alternative specifications of

the univariate GARCH type are used to model htεi . In particular, we consider the GARCH model

of Bollerslev [1986], the asymmetric GJR-GARCH model Glosten et al. [1993], the exponential

GARCH (EGARCH) model of Nelson [1991], the threshold GARCH (TGARCH) model of Zakoian

[1994], the asymmetric exponent GARCH (APARCH) model of Ding et al. [1993], asymmetric

GARCH (AGARCH) model of Engle [1990], and the non-linear asymmetric GARCH (NAGARCH)

model of Engle & Ng [1993]. In all models, without loss of generality, their simplest form is adopted

in which the conditional variance depends on one lag of both past returns and conditional variances.

The Appendix lists the exact specifications of each of these models. The same procedure is applied

to the choice of the GARCH specification for the conditional variance of the factors in (6). In all

cases, the choice of the specification used is based on Akaike Information Criterion (AIC).
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2.3 Expected bond returns and the conditional covariance matrix of bond re-

turns

As we discuss in Section 2.4, the computation of the VaR requires estimates of the expected return

of each bond, as well as the covariance matrix of the set of bond returns in the portfolio. However,

the factor models for the term structure of interest rates discussed above are designed to model only

bond yields. Nevertheless, it is possible to obtain expressions for the expected bond return and for

the conditional covariance matrix of bond returns based on the distribution of the expected yields.

The following proposition defines this distribution.

Proposition 1. Given the system of equations in (1) and (2), the distribution of expected yields

yt|t−1 is N(µy,t,Σy,t) with µy,t = Λft|t−1 and Σy,t = ΛΩt|t−1Λ′ + Σt|t−1, where ft|t−1 is a one-step-

ahead forecast of the factors and Σt|t−1 and Ωt|t−1 are one-step-ahead forecasts of the conditional

covariance matrices in (1) and (2), respectively.

Proof. Taking expectation of the factor model for the yields in (1), we have

µt = Et−1 [yt] = Λ (λ)Et−1 [ft] = Λ (λ) ft|t−1 (9)

where ft|t−1 are one-step-ahead predictions of the factors. The corresponding conditional covariance

matrix is given by:

Σyt = Et−1 [(yt − Et−1 [yt]) (yt − Et−1 [yt])]

= Et−1

[
(Λft + εt − ΛEt−1 [ft]) (Λft + εt − ΛEt−1 [ft])

′]
= Et−1

[
(Λ (ft − Et−1 [ft]) + εt) (Λ (ft − Et−1 [ft]) + εt)

′]
= Et−1

[
(Λ (µ+ Υft−1 + ηt − µ−Υft−1) + εt) (Λ (µ+ Υft−1 + ηt − µ−Υft−1) + εt)

′]
= Et−1

[
(Ληt + εt) (Ληt + εt)

′]
= Et−1

[
Ληtη

′
tΛ
′ + εtε

′
t

]
= ΛEt−1

[
ηtη
′
t

]
Λ′ + Et−1

[
εtε
′
t

]
= ΛΩt|t−1Λ′ + Σt|t−1.

since cross-product between ηt and εt vanishes because of independence.

Using the results of Proposition 1, we next show that it is possible to derive the distribution of

expected fixed-maturity bond prices. Taking into account that the price of a bond at time t, Pt(τ),

is the present value at time t of $1 receivable τ periods ahead, and letting yt|t−1 denote the one step

ahead forecast of its continuously compounded zero-coupon nominal yield to maturity, we obtain

the vector of expected bond prices Pt|t−1 for all maturities:

Pt|t−1 = exp
(
−τ ⊗ yt|t−1

)
, (10)
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where ⊗ is the Hadamard (elementwise) multiplication and τ is the vector of maturities. Since yt|t−1

follows a Normal distribution, Pt|t−1 has a log-normal distribution.

Note that the log-returns can be written as

rt = log

(
Pt
Pt−1

)
= logPt − logPt−1 = −τ ⊗ (yt − yt−1) . (11)

It is possible to find a closed form expression for the vector of expected returns of bonds as well

as for their conditional covariance matrix using (11). Proposition 2 defines these expressions.

Proposition 2. Given the system of equations in (1) and (2) and Proposition 1, the vector of

expected log-returns for bonds, µrt|t−1
, and their conditional covariance matrix Σrt|t−1

, which is

positive-definite ∀t, are given by:

µrt|t−1
= −τ ⊗ µy,t + τ ⊗ yt−1, (12)

Σrt|t−1
= τ ′τ ⊗

ΛΩt|t−1Λ′ + Σt|t−1︸ ︷︷ ︸
Σy,t

 . (13)

Proof. Using the log-return expression, we get:

rt = log

(
Pt
Pt−1

)
= logPt − logPt−1 = −τ ⊗ (yt − yt−1) . (14)

Since yt|t−1 ∼ N (µt,Σyt) where µt e Σyt are defined in Proposition 1, it is known that the

expected returns rt|t−1 follow N (µrt ,Σrt) where

µrt|t−1
= −τ ⊗ (Et−1[yt]− Et−1[yt−1]) = −τ ⊗ µt + τ ⊗ yt−1, (15)

Σrt|t−1
= τ ′τ ⊗

ΛΩt|t−1Λ′ + Σt|t−1︸ ︷︷ ︸
Σyt

 . (16)

The positivity of the matrix Σrt can be demonstrated as follows. The first term in brackets, ΛΩtΛ
′,

is positive-definite since Ωt|t−1 is diagonal and possesses only positive elements on its diagonal. The

second term, Σt|t−1 is positive-definite for the same reason. Since τ contains only positive elements,

τ ′τ is also a positive-definite matrix. Finally, Schur product theorem ensures that the Hadamard

product between Σyt and τ ′τ is positive definite.

The results in Proposition 2 show that it is possible to obtain closed form expressions for the

expected bond log-returns and their covariance matrix based on yield curve models such as the ones

by Nelson & Siegel [1987] and Svensson [1994]. These estimates are key ingredients to the problem
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of portfolio selection based on mean-variance paradigm proposed by Markowitz, as discussed in

section 4 bellow.

As pointed out by Litterman & Scheinkman [1991], the return on a fixed maturity zero-coupon

bond can be decomposed into two parts. The first part is a result of the capitalization received

due to ageing of the bond and the second part is attributed to the change in market prices of

constant maturity bonds. Furthermore, Litterman & Scheinkman [1991] point out that the first

part is deterministic, while the second part is subject to uncertainty regarding the changes in

prices. Clearly, portfolio optimization is only concerned with the second part.

However, for comparison with other benchmarks, it is also necessary to compute the deterministic

part of the return. The total return will be given by the income generated by the capitalization

based on the interest rate on the bond, plus capital appreciation given by the variation in market

prices. Following Jones et al. [1998] and de Goeij & Marquering [2006], the total return (between

t and t+ h) on a bond with fixed maturity τ is given by:

Rt+h(τ) =
Pt(τ)

Pt−h(τ)
− 1 +

h

252
yt−h(τ) = exp(ry,t+h)− 1 +

h

252
yt−h, (17)

where h is given on weekdays and ry,t+h is the log-return generated by changes in yields of fixed

maturities from period t to t+ h.

2.4 VaR computation

We now consider the computation of the VaR for bond portfolios using the yield curve models

discussed before. As we show next, the closed form expressions for the vector of bond portfolio

returns and their covariance matrix discussed in Section 2.3 can be applied to the computation of

the bond portfolio VaR in a straightforward way. Throughout the paper, we focus on the portfolio

VaR for a long position in which traders have bought fixed income securities and wish to measure

the risk associated to a decrease in their market prices. In this sense, we are interested in measuring

the risk associated to increases in bond yields, which is related to decreasing prices, and thus to

negative returns. Moreover, we consider an equally-weighted portfolio, which has been extensively

used in the empirical literature; see, for instance, Zaffaroni [2007], DeMiguel et al. [2009], and

Santos et al. [2012a].

Denote by Rt+h = (r1,t+h, . . . , rN,t+h)′ the vector of h-period returns (between t and t + h) of

the N bonds included in the portfolio. The bond portfolio return is given by rp,t+h = w′tRt+h,

where wt is the vector of portfolio weights to be determined at time t. The portfolio VaR at time

t for a given holding period h and confidence level ϑ is given by the ϑ-quantile of the conditional

distribution of the bond portfolio return. Thus, VaRt(h, ϑ) = F−1
p,t+h(ϑ), where F−1

p,t+h is the inverse

of the cumulative distribution function of rp,t+h. Throughout the paper we focus on the portfolio

VaR for a holding period of h = 1 day at ϑ = 1%, ϑ = 2.5%, and ϑ = 5%, which are the most

common risk levels used to compute the VaR. Therefore, from now on, we omit the arguments h
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and ϑ from the definition of the VaR.

When the distribution of bond log-returns is expressed in terms of its two first conditional

moments, the portfolio return can be represented as

rp,t+1 = µp,t+1 + σp,t+1zp,t+1, (18)

where the standardized unexpected returns zp,t+1 are independent and identically distributed with

mean equal to zero and unit variance. µp,t+1 and σp,t+1 are the conditional mean and standard

deviation of the bond portfolio return, given by

µp,t+1 = w′tµrt+1 (19)

and

σ2
p,t+1 = w′tΣrt+1wt, (20)

where µrt+1 is the N × 1 vector of conditional mean returns for the N individual assets and Σrt+1

is their N × N conditional covariance matrix defined in (12) and (13), respectively. The portfolio

VaR is then given by

VaRt+1 = µp,t+1 + σp,t+1q, (21)

where q is the ϑ-quantile of the distribution of zp,t+1. Clearly, the closed form expressions for the

vector of bond portfolio returns and their covariance matrix in (12) and (13), respectively, can be

readily applied to the computation of the bond portfolio VaR in (21).

3 Estimation procedure

In this section, we present the estimation procedure for the parameters of the yield curve and of

volatility models. The estimation is performed in a multi-step procedure in which the parameters

of the factor model are first estimated, and resulting residuals are used to estimate the volatility

models discussed in Section 2.2.

3.1 Estimation of the yield curve models

The alternative yield curve specifications considered in the paper are all nested and can therefore

be captured in one general formulation given by the system of equations (1) and (2). The most

straightforward approach to estimate the factors and parameters of this system consists of a two-

step procedure proposed by Diebold & Li [2006], where the parameter λt is treated as fixed. This

treatment greatly simplifies the estimation procedure, after fixing λt, it is trivial to estimate β1t, β2t,

and β3t from equation (4) via ordinary least squares (OLS) regressions. In the first step, the

measurement equation is treated as a cross section for each period of time, and ordinary least

squares (OLS) is employed to estimate the factors for all time periods individually. Given the

11



estimated time-series for the factors, the second step then consists of modeling the dynamics of the

factors in (2) by fitting either a joint VAR(1) model, or by estimating separate AR(1) models. To

simplify the estimation procedure, Diebold & Li [2006] suggest reducing the parameter vector by

setting the value of λt on a priori specified value, which is held fixed, rather than treating it as an

unknown parameter.

The decay parameters are estimated by minimizing the sum of squared fitting errors of the

model. That is, for a given set of estimated parameters the model-implied yields yt(τ) = Λ(λ)ft are

computed, and then the sum

Z =
T∑
t=1

N∑
i=1

(ŷt(τi)− yt(τi))2

is minimized with respect to λ1 and λ2. More specifically, λ is chosen to minimize the difference

between the adjusted yield, ŷt, and the observed yield, yt. Although being possibly less efficient than

a joint estimation of all model parameters in a one-step maximum likelihood procedure, the two-

step approach has the clear advantage that it is fast and thus much better suited for the recursive

out-of-sample forecast exercise carried out in this paper.

3.2 Estimation of the covariance matrix of bond yields

To obtain the conditional covariance matrix of the factors, Ωt|t−1, a DCC specification in (6) is used.

The estimation of the DCC model can be conveniently divided into volatility part and correlation

part. The volatility part refers to estimating the univariate conditional volatility models of the

factors using a GARCH-type specification. The parameters of univariate volatility models are

estimated by quasi maximum likelihood (QML) assuming Gaussian innovations.3 The correlation

part refers to the estimation of the conditional correlation matrix in (7) and (8). To estimate the

parameters of the correlation matrix, we employ the composite likelihood (CL) method proposed by

Engle et al. [2008]. As pointed out by Engle et al. [2008], the CL estimator provides more accurate

parameter estimates in comparison to the two-step procedure proposed by Engle & Sheppard [2001]

and Sheppard [2003], especially in large problems.

4 Empirical application

In order to illustrate the applicability of the proposed estimators for the vector of expected bond

returns and their conditional covariance matrix, in this Section we consider the problem of the

one-step-ahead VaR forecasting of an equally-weighted bond portfolio as discussed in Sections 2.3

3A review of issues related to the estimation of univariate GARCH models, such as the choice of initial values,
numerical algorithms, accuracy, and asymptotic properties are given by Berkes et al. [2003], Robinson & Zaffaroni
[2006], Francq & Zakoian [2009] and Zivot [2009]. It is important to note that even when the normality assumption
is inappropriate, the QML estimator of univariate GARCH models based on maximizing the Gaussian likelihood is
consistent and asymptotically normal, provided that the conditional mean and variance of the GARCH model are
correctly specified, see Bollerslev & Wooldridge [1992].
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and 2.4. As we noted above, our interest is on the portfolio VaR for a long position in which traders

have bought fixed income securities and wish to measure the risk associated to a decrease in their

market prices.

4.1 Methodology for backtesting the VaR

A important issue related to VaR modeling is the backtesting, which is the analysis of past VaR

violations, see Christoffersen [1998], Christoffersen et al. [2001], and Andersen et al. [2006]. This

analysis is based on the hit sequence, which is a sequence of binary variables that denotes VaR

violations and can be defined as

It =

{
1 if rp,t < V aRt

0 if rp,t > V aRt
,

where rp,t is the bond portfolio return at time t. Clearly, the behavior of the hit sequence is of main

interest. Risk managers are concerned with VaR violations and, equally importantly, with whether

these violations are clustered in time or if they appear to be randomly sparse. Clustered violations

indicate that the VaR model can be misspecified and can fail to predict the portfolio VaR in times

of high volatility such as during financial crises. For risk measurement purposes, the accuracy of

VaR estimates during financial turmoils is highly desirable. Christoffersen [1998] point out that

the problem of determining the accuracy of the VaR can be reduced to the problem of determining

whether the hit sequence satisfies two properties. The first is the unconditional coverage property,

which states that the probability of realizing a loss in excess of the reported VaR must be precisely

ϑ×100%. To check if this is the case, one has to compute the empirical (or realized) hit rate, which

is the number of times in which the observed bond portfolio returns is lower than the estimated

VaR over the total number of periods analyzed, i.e. hit rate = 1
T

T∑
t=1

I (rp,t < V aRt). For instance,

when computing the VaR at the 1% nominal level, one would expect that in 1% of the cases the

observed portfolio return should be lower than the estimated VaR (i.e. a hit rate of 1%). The second

aspect is the independence property, which indicates whether two elements of the hit sequence are

independent from each other. Intuitively, if previous VaR violations presage a future VaR violation

then this points to a general inadequacy in the reported VaR measure.

In this paper we employ the independence, unconditional and conditional coverage tests proposed

by Christoffersen [1998]. To test the independence in the hit sequence, a likelihood ratio test (LR)

of the following form is conducted,

LRind = −2 log
[
L
(

Π̂2; I1, I2, ..., IT

)
/L
(

Π̂1; I1, I2, ..., IT

)]
, (22)

where the numerator corresponds to the likelihood function of a first order Markov model estimated

with the output sequence {Ît} obtained from the model and the denominator is the likelihood

function of a binary Markov chain, and Π̂1 and Π̂2 are the corresponding transition probability
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matrices given by

Π̂1 =

[
n00

n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

]
, (23)

and Π̂2 = (n01 + n11) / (n00 + n10 + n01 + n11), where nij is the number of observations with value

i followed by j. The LRind test is asymptotically distributed as a χ2 distribution with 1 degree

of freedom. To test the unconditional coverage, the null hypothesis is E[I] = ϑ against the al-

ternative E[I] 6= ϑ. The likelihood function under the null is L(p; I1, I2, ..., IT ) = (1 − ϑ)n0(ϑ)n1

and under the alternative is L(π; I1, I2, ..., IT ) = (1 − π)n0(π)n1 . The resulting LR test is LRuc =

−2 log[L(p; I1, I2, ..., IT )/L(π̂; I1, I2, ..., IT )], where π̂ = n1/(n0 + n1) and n1 and n0 are the number

of occurrences of ones and zeros in the hit sequence, respectively. The LRuc is distributed as a χ2

distribution with 1 degree of freedom. Finally, to test the joint hypothesis of independence and

unconditional coverage, a LR of the form is conducted,

LRcc = 2 log[L(p; I1, I2, ..., IT )/L(Π̂1; I1, I2, ..., IT )],

which is refereed to as the conditional coverage test. The LRcc test is distributed as a a χ2 distri-

bution with 2 degrees of freedom.

It is worth noting that the independence, unconditional coverage, and conditional coverage tests,

though appropriate to evaluate the accuracy of a single model, may not appropriate for ranking

alternative estimates of the VaR and can provide an ambiguous decision about which candidate

model is better. Therefore, it is interesting to enhance the backtesting analysis by using statistical

tests designed to evaluate the comparative performance among candidate models, see Santos et al.

[2012a] for a discussion. In this sense, we follow Santos et al. [2012a] and consider the comparative

predictive ability (CPA) test proposed by Giacomini & White [2006]. Consequently, on top of

evaluating whether each of the estimated VaRs are adequate, we also compare and rank them by

implementing the CPA test of Giacomini & White [2006] which can be applied to the comparison

between nested and non-nested models and among several alternative estimation procedures. The

CPA test is implemented using the following asymmetric linear (tick) loss function of order ϑ:

Lϑ (et) = (ϑ− I (et < 0)) et, (24)

where et = VaRϑ
t − rp,t. The loss function in (24) is the implicit loss function whenever the object

of interest is a forecast of a particular ϑ-quantile; see Giacomini & Komunjer [2005]. Consequently,

finding the model that minimizes (24) is an intuitive and appealing criterion to compare predictive

ability. A Wald-type test is conducted as follows:

CPAϑ = T

(
T−1

T−1∑
t=1
It LDϑt+1

)′
Θ̂−1

(
T−1

T−1∑
t=1
It LDϑt+1

)
, (25)

where T is the sample size, LDϑt is the loss difference between the two models, and Θ̂ is a matrix
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that consistently estimate the variance of It LDϑt+1. Following Giacomini & White [2006], we

assume It = (1, LDϑt ). The null hypothesis of equal predictive ability is rejected for a size ξ when

CPAϑ > χ2
T,1−ξ.

4.2 Data

Our data set consists of time series of yields of Brazilian Inter Bank Deposit Future Contract (DI-

futuro), which is one of the largest fixed-income markets among emerging economies, collected on a

daily basis. The DI-futuro contract with maturity τ is a zero-coupon future contract in which the

underlying asset is the DI-futuro interest rate accrued on a daily basis, capitalized between trading

period t and τ .4 The contract value is set by its value at maturity, R$100, 000.00, discounted

according to the accrued interest rate negotiated between the seller and the buyer. A similar data

set is also used by Almeida & Vicente [2009].

The Brazilian Mercantile and Futures Exchange (BM&F) is the entity that offers the DI-futuro

contract and determines the number of maturities with authorized contracts. In general, there are

around 20 maturities with authorized contracts every day. In 2010 the DI-futuro market traded

a total of 293 million contracts corresponding to US$ 15 billion. The DI-futuro contract is very

similar to the zero-coupon bond, except for the daily payment of marginal adjustments. Every day

the cash flow is the difference between the adjustment price of the current day and the adjustment

price of the previous day, indexed by the DI-futuro rate of the previous day.

We use time series of daily closing yields of the DI-futuro contracts with highest liquidity ranging

from January 2006 to December 2010 (T = 986 observations). In practice, contracts with all

maturities are not observed on a daily basis. Therefore, based on the observed rates for the available

maturities, the data were converted into fixed maturities of 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30,

33, 36, 42 and 48 months, using the cubic splines interpolation method originally proposed by

McCulloch [1971, 1975]5.

Table 1 reports descriptive statistics for the Brazilian interest rate yield curve based on the

DI-futuro market. The table reports the mean, standard deviation, minimum, maximum and the

sample autocorrelations at lags of one day, one week, and one month. The summary statistics

confirm the presence of stylized facts common to yield curve data: the average curve is upward

sloping and concave, volatility is decreasing with maturity, autocorrelations are very high specially

4The DI-futuro rate is the average daily rate of Brazilian interbank deposits (borowing/lending), calculated by the
Clearinghouse for Custody and Settlements (CETIP) for all business days. The DI-futuro rate, which is published
on a daily basis, is expressed in annually compounded terms, based on 252 business days. When buying a DI-futuro
contract for the price at time t and keeping it until maturity τ , the gain or loss is given by:

100.000

(∏ζ(t,τ)
i=1 (1 + yi)

1
252

(1 +DI∗)
ζ(t,τ)
252

− 1

)
,

where yi denotes the DI-futuro rate, (i− 1) days after the trading day. The function ζ(t, τ) represents the number of
working days between t and τ .

5For further details and applications of this method, see Hagan & West [2006] and Hayden & Ferstl [2010].
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for shorter maturities.

Table 1: Descriptive Statistics

The table reports summary statistics for the Brazilian yield curve based on DI-futuro contracts. The sample consists of daily
yield data from January 2006 to December 2010. Maturities are measured in months. We show for each maturity the mean,
standard deviation, minimum, maximum, skewness and excess of kurtosis. The last three columns contains the autocorrelations
with a lag of one day, one week and one month, respectively (ACF, ρ̂(1), ρ̂(5), ρ̂(21)).

Maturity τ Mean Standard Deviation Minimum Maximum Skewness Kurtosis ρ̂(1) ρ̂(5) ρ̂(21)

Month

3 10.82 1.65 8.58 14.34 0.220 2.006 0.999 0.997 0.969
6 10.88 1.67 8.59 14.52 0.264 2.071 0.999 0.997 0.968
9 10.94 1.69 8.58 14.69 0.306 2.132 0.999 0.996 0.967
12 11.09 1.72 8.61 15.32 0.386 2.241 0.999 0.995 0.961
15 11.34 1.73 8.73 16.04 0.495 2.373 0.998 0.992 0.950
18 11.60 1.72 8.99 16.40 0.572 2.461 0.998 0.989 0.938
21 11.85 1.68 9.35 16.92 0.655 2.565 0.997 0.986 0.925
24 12.04 1.61 9.55 17.12 0.718 2.659 0.996 0.982 0.911
27 12.21 1.55 9.79 17.26 0.805 2.815 0.995 0.979 0.894
30 12.33 1.49 10.06 17.44 0.912 3.026 0.995 0.975 0.877
33 12.43 1.45 10.27 17.62 1.005 3.290 0.994 0.972 0.859
36 12.50 1.41 10.42 17.78 1.085 3.586 0.993 0.968 0.843
42 12.60 1.32 10.71 17.83 1.281 4.180 0.992 0.961 0.814
48 12.68 1.24 11.09 17.93 1.465 4.910 0.990 0.955 0.788

Figure 1 displays a three-dimensional plot of the data set and illustrates how yield levels and

spreads vary substantially throughout the sample. The plot also suggests the presence of an under-

lying factor structure. Although the yield series vary heavily over time for each of the maturities,

a strong common pattern in the 15 series over time is apparent. For most months, the yield curve

is an upward sloping function of time to maturity. For example, last year of the sample is char-

acterized by rising interest rates, especially for the shorter maturities, which respond faster to the

contractionary monetary policy implemented by the Brazilian Central Bank in the first half of 2010.

It is clear from Figure 1 that not only the level of the term structure fluctuates over time but also

its slope and curvature. The curve takes on various forms ranging from nearly flat to (inverted)

S-type shapes.

4.3 Benchmark models

In order to provide evidence of the flexibility of the proposed approach discussed in Section 2,

we implement a set of alternative specifications to model the conditional covariance matrix of bond

returns. We consider alternative conditional correlation specification to model the covariance matrix

of the factors in (6). Our first benchmark specification is the constant conditional correlation (CCC)

model of Bollerslev [1990]. In this case, we consider that the correlation matrix Ψt in (6) is constant

over time. Our second benchmark specification is the dynamic equicorrelation (DECO) model

proposed by Engle & Kelly [2009], which belongs to the class of conditional correlation model but

uses a more parsimonious specification in comparison to the DCC model discussed above. In the

DECO model, the conditional correlation matrix Ψt is given by:

Ψt = ΨDECO
t ,
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Figure 1: Evolution of the yield curve
The figure plots the evolution of term structure of interest rates (based on DI-futuro contracts) for the time horizon
of 2006:01-2010:12. The sample consisted of the daily yields for the maturities of 1, 3, 4, 6, 9, 12, 15, 18, 24, 27, 30,
36, 42 and 48 months.

where ΨDECO
t is the conditional equicorrelation matrix defined as:

ΨDECO
t = (1− ψequit )In + ψequit Jn,

where ψequit is the equicorrelation at time t, In is a N -dimensional identity matrix, and Jn is a

N × N matrix of ones. Following Engle & Kelly [2009], the DECO sets the equicorrelation ψequit

equal to the average pairwise DCC correlation. The model is estimated using the two-step procedure

proposed by Engle & Sheppard [2001].

Our second class of benchmark specifications to compute the VaR uses the same expressions for

vector of expected bond returns and for the covariance matrix of bond returns discussed in Section 2

but replaces the matrices Σt and Ωt in (1) and (2), respectively, with their sample counterparts. In

order words, this benchmark specification considers that Σt and Ωt are sample covariance matrices.

This is an interesting benchmark to our approach since we originally adopt more sophisticated

multivariate and univariate GARCH-type specifications to model these two matrices.

4.4 Implementation details

All models are estimated using a recursive expanding estimation window. Departing from the first

500 observations, all models are estimated and their corresponding one-step-ahead VaR estimated

are obtained using (21). Next, we add one observation to the estimation window and re-estimate
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all models and obtain another one-step-ahead estimate of the VaR. This process is repeated until

the end of the data set is reached. In the end, we obtain 486 out-of-sample one-step-ahead VaR

forecasts. All results discussed in Section 4.5 are based solely on out-of-sample observations.

4.5 Results

In this Section, we report the backtesting results of the VaR estimates obtained with the specifica-

tions for the vector of expected bond returns and their conditional covariance matrix proposed in

Section 2.3. The computation of the VaR is discussed in Section 2.4 whereas the methodology for

backtesting is discussed in Section 4.1. In order to facilitate the exposition of the results, we denote

by NS-AR-DCC and NS-VAR-DCC the the VaR estimates obtained when the 3-factor Nelson-Siegel

model is used to model bond yields and an AR(1) and VAR(1) specifications, respectively, are used

to model the factor dynamics and a DCC-GARCH specification is used to model the covariance

matrix of the factors. Similarly, we denote by Svensson-AR-DCC and Svensson-VAR-DCC the VaR

estimates obtained when the 4-factor Svensson model is used to model bond yields and an AR(1)

and VAR(1) specifications, respectively, are used to model the factor dynamics and a DCC-GARCH

specification is used to model the covariance matrix of the factors. We also consider the cases in

which the covariance matrix of the factors in (2) is modeled according to a CCC and DECO speci-

fications. Finally, we consider the case in which the covariance matrix of the factors in (2) and the

covariance matrix of the residuals from the yield model in (1) are sample estimates. Details of these

benchmark specifications are given in Section 4.3.

Table 2 reports the the hit rate and the p-values of the independence, unconditional coverage

and conditional coverage tests for the 1%, 2.5%, and 5% VaR estimates obtained with each of the

specifications proposed in the paper. We find that some specifications passed all backtests in the

thee VaR levels considered. For instance, when looking at the VaR estimates for the 1% level,

we observe that the NS-VAR-DCC and NS-VAR-CCC passed all backtests. These specifications

achieved an exact empirical coverage rate of 1%. The VaR estimates delivered by the Svensson-

AR-DCC specification also performed well, with an empirical coverage rate of 1.2%. As for the

VaR estimates for the 2.5% level, we find once again that the NS-VAR-DCC and NS-VAR-CCC

performed remarkably well as they passed all backtests. Finally, as for the VaR estimates for the

5% level we find that five specifications passed the correct unconditional coverage tests, but only

the NS-VAR-DCC and NS-VAR-CCC specifications passed joint conditional coverage test. This

results suggest that these specifications deliver very accurate VaR estimates for the bond portfolio

considered in the paper and provide favorable evidence to the proposed estimators for the vector of

expected bond return and their covariance matrix proposed in the paper.

We also report in Table 3 the p-values of the Giacomini & White [2006] CPA test for each pairwise

comparison among all specifications considered in the paper. In order to facilitate the interpretation

of the results, we highlight in bold the cases in which the model in the line outperforms the model

in the column. We observe that the results in Table 3 corroborate the backtesting results discussed
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above. The NS-VAR-DCC specification outperform all other specifications in all cases. In few cases,

however, the differences in performance with respect to other specifications are not significant. For

instance, the difference with respect to the NS-VAR-CCC specification is not statistically significant.

This suggests that both NS-VAR-DCC and NS-VAR-CCC performed very well in modeling the VaR

for the bond portfolio.

In order to further illustrate the results presented in Tables 2 to 3, we plot in Figure 2 the returns

of the equally-weighted bond portfolio over the out-of-sample period and the 1%-VaR estimates

delivered by the NS-AR-DCC (upper right), NS-VAR-DCC (upper left), Svensson-AR-DCC (lower

right), and Svensson-VAR-DCC (lower left) specifications. We observe that the VaR estimates

obtained when the AR(1) specification is used to model the factor dynamics tend bo be more

noisy than those obtained with a VAR(1) specifications. Moreover, the Figure shows we find the

the dynamic Svensson yield curve model tend to generate more conservative VaR estimates in

comparison to the dynamic Nelson-Siegel model. This corroborates the findings in Table 2 which

reveals that the empirical coverage rates obtained with the Svensson model tend to be lower than

those obtained with the Nelson-Siegel model.
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Figure 2: Value-at-risk (VaR) estimates

5 Concluding remarks

Obtaining accurate risk measures can be seen as an important issue in risk management. In this

sense, the use of VaR as a risk measure plays a major role in monitoring market risk exposure and
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determining the amount of capital subject to regulatory control. The vast majority of the existing

evidence on VaR modeling focus on measuring the risk of equity portfolios. Therefore, in this paper

we amend the literature on VaR-based risk measurement by putting forward a novel approach to

measure risk in bond portfolios. Our approach significantly differs from the existing ones as it is built

upon a general class of well established term structure factor models such as the dynamic version

of the Nelson-Siegel model proposed by Diebold & Li [2006], and the four factor version proposed

by Svensson [1994]. We derive closed-form expressions for the vector expected bond returns and for

the covariance matrix of bond returns based on yield curve models to compute the VaR of a bond

portfolio.

We provide an empirical application by considering a data set composed of constant-maturity

future contracts of the Brazilian Inter Bank Deposit Future Contract (DI-futuro) which is equivalent

to a zero-coupon bond and is highly liquid. Based on the estimates for the vector of expected returns

of these fixed-income assets and their conditional covariance matrix, we obtain out-of-sample VaR

estimates for an equally-weighted bond portfolio and provide a comprehensive backtesting analysis.

Our results indicate that the proposed specifications outperform several benchmark specifications

in modeling and forecasting the one-step-ahead VaR at different levels.
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Table 2: Backtesting results
The table reports the backtesting results for the VaR estimates at the ϑ = 1%, ϑ = 2.5%, and ϑ = 5% levels obtained with
the specifications for the vector of expected bond returns and their conditional covariance matrix proposed in the paper. We
report the hit rate and the p-values of the independence (“Indep.”), unconditional coverage (“U.C.”) and conditional coverage
(“C.C.”) tests. NS-AR-DCC and NS-VAR-DCC denote the the VaR estimates obtained when the 3-factor Nelson-Siegel model
is used to model bond yields and an AR(1) and VAR(1) specifications, respectively, are used to model the factor dynamics
and a DCC-GARCH specification is used to model the covariance matrix of the factors. Similarly, Svensson-AR-DCC and
Svensson-VAR-DCC denote the VaR estimates obtained when the 4-factor Svensson model is used to model bond yields. A
similar notation applies to the remaining specifications. We highlight in bold the p-values indicating the non-rejection of the
null hypothesis of the test.

Yield curve Factor Covariance Hit rate Indep. U.C. C.C.
model dynamics specification ϑ = 1%

Nelson-Siegel AR(1) DCC-GARCH 2.5% 0.293 0.006 0.013
Nelson-Siegel AR(1) CCC-GARCH 2.7% 0.042 0.002 0.001
Nelson-Siegel AR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Nelson-Siegel AR(1) Sample 0.6% 0.009 0.366 0.023
Nelson-Siegel VAR(1) DCC-GARCH 1.0% 0.759 0.942 0.951
Nelson-Siegel VAR(1) CCC-GARCH 1.0% 0.759 0.942 0.951
Nelson-Siegel VAR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Nelson-Siegel VAR(1) Sample 0.0% 0.000 0.000 0.000

Svensson AR(1) DCC-GARCH 1.2% 0.056 0.609 0.141
Svensson AR(1) CCC-GARCH 0.8% 0.020 0.692 0.062
Svensson AR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Svensson AR(1) Sample 0.6% 0.009 0.366 0.023
Svensson VAR(1) DCC-GARCH 0.0% 0.000 0.000 0.000
Svensson VAR(1) CCC-GARCH 0.0% 0.000 0.000 0.000
Svensson VAR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Svensson VAR(1) Sample 0.0% 0.000 0.000 0.000

ϑ = 2.5%
Nelson-Siegel AR(1) DCC-GARCH 4.3% 0.001 0.019 0.000
Nelson-Siegel AR(1) CCC-GARCH 3.3% 0.012 0.279 0.024
Nelson-Siegel AR(1) DECO-GARCH 0.2% 0.963 0.000 0.000
Nelson-Siegel AR(1) Sample 1.2% 0.000 0.049 0.000
Nelson-Siegel VAR(1) DCC-GARCH 1.6% 0.615 0.204 0.393
Nelson-Siegel VAR(1) CCC-GARCH 1.4% 0.662 0.107 0.249
Nelson-Siegel VAR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Nelson-Siegel VAR(1) Sample 0.8% 0.809 0.006 0.023

Svensson AR(1) DCC-GARCH 2.3% 0.020 0.745 0.063
Svensson AR(1) CCC-GARCH 1.9% 0.008 0.345 0.019
Svensson AR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Svensson AR(1) Sample 0.8% 0.020 0.006 0.002
Svensson VAR(1) DCC-GARCH 0.2% 0.963 0.000 0.000
Svensson VAR(1) CCC-GARCH 0.0% 0.000 0.000 0.000
Svensson VAR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Svensson VAR(1) Sample 0.4% 0.911 0.000 0.001

ϑ = 5%
Nelson-Siegel AR(1) DCC-GARCH 6.6% 0.000 0.120 0.000
Nelson-Siegel AR(1) CCC-GARCH 6.6% 0.000 0.120 0.000
Nelson-Siegel AR(1) DECO-GARCH 0.6% 0.859 0.000 0.000
Nelson-Siegel AR(1) Sample 2.3% 0.001 0.002 0.000
Nelson-Siegel VAR(1) DCC-GARCH 3.5% 0.273 0.113 0.157
Nelson-Siegel VAR(1) CCC-GARCH 3.3% 0.303 0.069 0.113
Nelson-Siegel VAR(1) DECO-GARCH 0.2% 0.963 0.000 0.000
Nelson-Siegel VAR(1) Sample 1.2% 0.056 0.000 0.000

Svensson AR(1) DCC-GARCH 4.9% 0.000 0.967 0.000
Svensson AR(1) CCC-GARCH 3.9% 0.000 0.261 0.001
Svensson AR(1) DECO-GARCH 0.2% 0.963 0.000 0.000
Svensson AR(1) Sample 1.9% 0.000 0.000 0.000
Svensson VAR(1) DCC-GARCH 2.1% 0.526 0.001 0.003
Svensson VAR(1) CCC-GARCH 1.6% 0.615 0.000 0.000
Svensson VAR(1) DECO-GARCH 0.0% 0.000 0.000 0.000
Svensson VAR(1) Sample 1.0% 0.036 0.000 0.000
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Appendix: Univariate GARCH models considered

In this appendix we describe the univariate GARCH specifications that were used to model the
conditional variance of the factors and the conditional variance of the measurement errors.

GARCH:
σ2
t = ω + αε2t−1 + βσ2

t−1

Glosten-Jagannathan-Runkle GARCH (GJR-GARCH):

σ2
t = ω + αε2t−1 + γI[εt−1 < 0]ε2t−1 + βσ2

t−1

Exponential GARCH (EGARCH):

ln(σ2
t ) = ω + α

|εt−1|√
σ2
t−1

+ γ
εt−1√
σ2
t−1

+ βσ2
t−1

Threshold GARCH (TGARCH):

σt = ω + α|εt−1|+ γI[εt−1 < 0]|εt−1|+ βσt−1

Asymmetric power GARCH (APARCH):

σλt = ω + α (|εt−1|+ γεt−1)λ + βσλt−1

Asymmetric GARCH (AGARCH):

σ2
t = ω + α(εt−1 + γ)2 + βσ2

t−1

Nonlinear asymmetric GARCH (NAGARCH):

σ2
t = ω + α(εt−1 + γ

√
σ2
t−1)2 + βσ2

t−1
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