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Abstract

We devise a novel approach to combine predictions of high dimensional conditional covariance ma-
trices using economic criteria based on portfolio selection. The combination scheme takes into account
not only the portfolio objective function but also the portfolio characteristics in order to define the
mixing weights. The proposed model combination i) does not require a proxy for the latent conditional
covariance matrix, ii) does not require optimization of the combination weights, which facilitates its
implementation in practical situation, and iii) holds the equally weighted model combination as a par-
ticular case. An empirical application involving 4 data sets with cross section dimensions ranging from
17 to 100 assets over a 10-year time span shows that the proposed performance-based combinations of
multivariate GARCH forecasts leads to mean-variance portfolios with higher risk-adjusted performance
in terms of Sharpe ratio as well as to minimum variance portfolios with lower risk on an out-of-sample
basis with respect to all individual models considered. The results are robust to the presence of trans-
action costs.
Key words: Bootstrap, conditional correlation models, mean-variance portfolios, Sharpe ratios, trans-
action costs.

1 Introduction

Combining predictions from alternative models is a very well established forecasting approach. In fact, the

literature on forecast combinations is extensive and points to the superiority of combined forecasts with

respect to single models in many different contexts. The motivation to combine forecasts comes from an

important result from the methodological literature on forecasting, which shows that a linear combination

of two or more forecasts may yield more accurate predictions than using only a single forecast (Granger,

1989; Newbold and Harvey, 2002; Aiolfi and Timmermann, 2006). Moreover, adaptive strategies for
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combining forecasts might also mitigate structural breaks and model misspecification and thus lead to

more accurate forecasts (Pesaran and Timmermann, 2007).

A number of potential explanations for the good performance of combined forecasts vis-a-vis individual

forecast models can be pointed out. First, if two models provide partial, but incompletely overlapping

explanations, then some combination of the two might do better than either alone; see Hendry and

Clements (2004). Specifically, if two forecasts were differentially biased (one upwards, one downwards),

then combining could be an improvement over either. Second, averaging forecasts reduces variance to the

extent that separate sources of information are used. Third, forecast combination can also alleviate the

problem of model uncertainty.1

Existing evidence suggests that the combination of univariate volatility leads to more accurate forecasts

with respect to single models (Becker and Clements, 2008; Patton and Sheppard, 2009). The study of

combined multivariate volatility predictions, however, is in its early days. This issue is very important since

the combination of multivariate volatility models might also lead to more accurate predictions, therefore

improving decision making in economic and financial problems that depend on covariance estimates such

as asset pricing, portfolio optimization and market risk management. Engle and Colacito (2006), for

instance, show that accurate covariance information will allow the investor to achieve lower volatility,

higher return, or both.

In this paper, we put forward a novel approach to combine multivariate volatility predictions from

alternative conditional covariance models. The proposed combination rule is motivated by the fact this

class of models is often applied in portfolio selection problems. More specifically, combination weights are

defined by taking into account the past performance of each individual model in obtaining optimal portfo-

lios. The past performance can be either in-sample or out-of-sample. In our empirical implementation of

the proposed combination method, we rely on in-sample rather than out-of-sample portfolio performance

of each individual model. This choice is motivated by two reasons. First, it simplifies implementation as

the same estimation window used to estimate the parameters of each individual model is also used to eval-

uate portfolio performance. Second, and most importantly, we performed extensive robustness checks to

evaluate the gains (or lack of) from changing to past out-of-sample portfolio performance, despite higher

computational cost. The results are very similar in comparison to those based on the past in-sample

performance of each individual model, which makes us confident to employ this approach. Another im-

1Geweke and Amisano (2011) study the existence of model complementarities in linear prediction pools and show that a
model with positive weight in a pool may have zero weight if some other models are deleted from that pool.
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portant aspect of the proposed approach is that combination weights can be calibrated in order to adjust

i) the aggressiveness in the allocation across alternative models (i.e. a cross section adjustment) and ii)

the importance given to the most recent observations in the calculation of portfolio performance (that is,

a time series adjustment). Three major advantages of this approach are that i) does not require a proxy

for the latent conditional covariance matrix, ii) does not require optimization of the combination weights,

and iii) holds the equally-weighted model combination as a particular case. Each of these advantages are

discussed in Section 2.

The proposed approach to combine predictions of conditional covariance matrices is based on the

mean-variance portfolio selection problem introduced by Markowitz (1952). Two aspects motivate our

choice for adopting the mean-variance framework. First, economic applications involving multivariate

volatility models often rely on the mean-variance portfolio problem; see, for example, Engle and Colacito

(2006) and Engle and Sheppard (2008). Therefore, it is natural to consider this type of portfolio selection

policy when devising a performance-based model combination approach for conditional covariance models.

Second, the mean-variance framework is one of the milestones of modern finance theory and is widespread

among academics and market participants. In this framework, individuals choose their allocations in risky

assets based on the trade-off between expected return and risk. We consider two alternative versions of

the mean-variance portfolio problem. The first is based on an investor who wishes to minimize portfolio

risk subjected to a target portfolio return. In this case, the investor wishes to achieve higher risk-adjusted

portfolio returns. The mean-variance problem, however, is known to be very sensitive to estimation of

the mean returns (e.g. Jagannathan and Ma, 2003). Very often, the estimation error in the mean returns

degrade the overall portfolio performance and introduces an undesirable level of portfolio turnover. In

fact, existing evidence suggest that the performance of optimal portfolios that do not rely on estimated

mean returns is better; see, for instance, DeMiguel et al. (2009). Because of that, we also consider a second

type of investor who adopts the minimum variance criterion in order to decide her portfolio allocations.

This portfolio policy can be seen as a particular case of the traditional mean-variance optimization. In

fact, existing evidence suggest that the performance of optimal portfolios that do not rely on estimated

mean returns is better; see, for instance, DeMiguel et al. (2009).

It is worth noting that both mean-variance and minimum variance portfolio problems require esti-

mation of the full covariance matrix of asset returns. In most practical situations, however, the investor

faces uncertainty on which is the most appropriate specification to model and to forecast covariances. For
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instance, should the investor employ a multivariate GARCH model or instead a multivariate stochastic

variance (SV) specification? Should the investor consider time varying or time invariant conditional cor-

relations? Are more parameterized specifications better than more parsimonious ones? How to handle

this uncertainty? All these questions are typically answered in the literature by horse-racing many single

models; see, for instance, Engle and Colacito (2006) and Engle and Sheppard (2008). Our performance-

based combination approach helps alleviating this problem since it is explicitly built to exploit model

complementarities and to favor the models that generate portfolios with better portfolio performance and

to penalize those that yield portfolios with poor performance.

Our paper is related to recent studies such as Becker et al. (2014) and Amendola and Storti (2015).

Becker et al. (2014) study the ability of alternative loss functions to select the best specifications for the

portfolio selection problem and find that a likelihood-based function is the best function for this purpose.

Amendola and Storti (2015) pioneered the literature on combined multivariate volatility predictions and

extended the approach in Patton and Sheppard (2009) to a multivariate setting. Their approach involves

estimating model combination weights via minimization of a loss function and similar as in Becker et al.

(2014) requires a proxy for the unobserved latent covariance matrix, which is specified as a realized

covariance measure. Our approach, in contrast, differs is several aspects since does not require neither

optimization of combination weights nor a proxy for the unobserved covariance matrix, which greatly

facilitates its implementation in practical situations. Moreover, instead of adopting a pure statistical

criterion for estimating the mixing weights, we directly apply an economic criterion for defining, in a

dynamic fashion, how much weight to put in each model. Therefore, our approach to combine multivariate

volatility predictions is consistent with the fact that this class of models is ultimately applied to economic

problems.

We test the effectiveness of the proposed model combination using 4 data sets from the US, European

and Asian stock markets with cross section dimensions ranging from 17 to 100 assets over a 10-year

time span. We implement a set of 8 alternative multivariate GARCH models that are widely used in

portfolio selection problems and obtain model combination schemes using the mean-variance and minimum

variance portfolio criterion for the mixing. We conduct a detailed economic evaluation of the resulting

optimal portfolios and implement a test for the portfolio risk and for the portfolio Sharpe ratio based

on the bootstrap procedure of Politis and Romano (1994), which allows us to formally compare optimal

portfolios obtained with alternative specifications in terms of their sample characteristics. Our results
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can be summarized as follows. First, when combining multivariate volatility forecasts based on the mean-

variance criterion, we observe that the resulting conditional covariance estimators yield mean-variance

portfolios with higher risk-adjusted returns measured by the Sharpe ratio. Second, when combining

multivariate volatility forecasts based on the minimum variance criterion, we observe that the minimum

variance portfolios obtained with the combined estimators are substantially and statistically less risky

with respect to all individual models considered.

The rest of the paper is organized as follows. In section 2 we detail the proposed combination rule.

Section 3 provide an empirical application based on two alternative data sets with many assets. Finally,

section 4 concludes.

2 Combining multivariate volatility forecasts

In this section, we detail the proposed approach to combine multivariate volatility predictions in a dynamic

fashion. To solve a variety of important problem in finance, it is common to choose a conditional covariance

specification in order to account for the time variation in second order moments; see, for instance, Engle

and Colacito (2006) and Becker et al. (2014). In most practical situations, however, the volatility process

is subject to changes and the investor faces uncertainty on which is the most appropriate specification

to model and to forecast covariances at a given point in time. In order to identify the best specification,

the most common practice in the literature is to horse-race many single models. We, on the other hand,

consider the possibility of improving the portfolio performance via model combinations. More specifically,

we consider the case in which there exists M alternative candidates. In this case, the combined conditional

covariance estimator, HComb
t , is defined as

HComb
t = λ1,tH

1
t + . . .+ λM,tH

M
t , (1)

where Hm
t denotes conditional covariance matrix of the m-th candidate model and λm,t is the corre-

sponding combination weight such that
M∑
m=1

λm,t = 1 and λm,t ≥ 0 ∀m. It is worth noting that a linear

combination in (1) is conveniently chosen as it guarantees that the resulting HComb
t is positive-definite

provided that individual models also deliver positive-definite conditional covariance matrices.

The most important aspect when combining alternative model based forecasts is to specify a combi-

nation vector λt = {λ1,t, . . . , λM,t}, that is, to decide how much weight to put in each individual forecast.
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The literature on forecast combinations offers many options to specify λm. In the case of volatility mod-

els, for instance, Patton and Sheppard (2009) and Amendola and Storti (2015) consider a combination

scheme based on the minimization of a statistical loss function that requires a proxy for the true un-

observed volatility, which is specified as a realized volatility measure. Despite the fact that the realized

covariance matrix is only an estimate of the true volatility, higher frequency data to compute this measure

is not always available and the combination weights do not incorporate any information about the decision

making task in which forecasts will be ultimately used.

We take a different approach with respect to the existing literature and specify λm in (1) by taking into

account an economic criterion based on the mean-variance and minimum variance portfolio optimization

problems. Using these economic criteria has at least two appealing features. First, it is consistent with

the fact that multivariate volatility models are ultimately applied to economic problems. Second, it is

based on a very well established portfolio selection problem. Next we detail the economic gain functions

used to construct the combined conditional covariance estimator in (1).

2.1 Mean-variance model combination

We consider an investor who allocates her wealth in N alternative risky assets. In order to choose the

weights wi for i = 1, . . . , N of each asset in the portfolio, we assume the investor adopts the mean-

variance portfolio policy. In this setting, the investor wishes to minimize portfolio risk subjected to a

target portfolio return. This portfolio optimization problem is defined as

min
w∈<N

w′tH
m
t wt

subject to

w′tµ = µ0

N∑
i=1

wi = 1,

(2)

where wt is the vector of portfolio weights for time t chosen at time t − 1 and Hm
t is a positive-definite

conditional covariance matrix of asset returns obtained with the m-th candidate model for time t and

forecasted at time t−1. µ is the vector of expected returns and µ0 is the required return. In our empirical

implementation, we define µ0 as the return of the equally-weighted portfolio. The solution to (2) is given

by wt = (Hm
t )−1 µ(Cµ0−B)+ι(A−Bµ0)

AC−B2 , where A = µ(Hm
t )−1µ, B = µ(Hm

t )−1ι, C = ι′(Hm
t )−1ι, and ι is a

vector of ones; see Cochrane (2009).
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Upon solving the portfolio problem in (2) for a sample with T observations and adopting a given

specification for the conditional covariance matrix Hm
t , the investor is interested in computing the portfolio

risk-adjusted return, which is usually measured by the Sharpe ratio and is defined as SR = µ̂/σ̂ where

µ̂ = 1
T−1

T−1∑
t=1

wt
′Rt+1 is the average portfolio return and σ̂2 =

T−1∑
t=1

(wt
′Rt+1−µ̂)2

T−1 , where Rt+1 is the vector

of asset returns at time t + 1. Instead of computing both µ̂ and σ̂2
m as the standard sample mean and

sample variance, respectively, we follow Stock and Watson (2004) and Genre et al. (2013) and consider

a more general expression for the model’s performance metric by introducing a discount (or forgetting)

factor δ, i.e.

µ̂m =

T−1∑
t=1

δT−1−t(wt
′Rt+1)

T−1

σ̂2
m =

T−1∑
t=1

δT−1−t(wt
′Rt+1−µ̂)

2

T−1 .

(3)

Values of δ which are below unity assign higher weights to more recent portfolio variances in the cal-

culation of combination weights. In our implementation, we follow Genre et al. (2013) and set δ =

{1, 0.95, 0.85, 0.80, 0.75}. The case where δ = 1 corresponds to no discounting and is equivalent to the

common expression of the sample variance.

In the mean-variance context, the combined conditional covariance estimator in (1) should privilege

the models that yield higher risk-adjusted returns (i.e. higher Sharpe ratios) and penalize those that yield

lower risk-adjusted returns. In this case, the performance-based model combination vector λm can be

defined as

λm =

(
µ̂m/̂σm

)
M∑
m=1

(
µ̂m/̂σm

) , (4)

where µ̂m and σ̂2
m are, respectively, the δ-adjusted portfolio average return and portfolio variance defined

in (3). In order to rule out the possibility of selecting models that generate portfolios with negative SR,

one can set λm = 0 if SRm < 0. We refer to this approach as the mean-var(δ) combination rule. The

inspiration for defining the performance-based model combination in (4) comes from Kirby and Ostdiek

(2012), who devised a portfolio policy that takes into account the inverse of the sample variance of the

individual assets as well as their risk-adjusted performance.

It is also worth noting that the mean-var(δ) strategy in (4) and (3) belongs to a more general class of

7



mean-var combination with weights of the form

λm =

(
µ̂m/̂σm

)η
M∑
m=1

(
µ̂m/̂σm

)η . (5)

The idea behind this generalization is straightforward. The tuning parameter η ≥ 0 determines how

aggressively we adjust the mixing weights in response to changes in the realized portfolio Sharpe ratios

obtained with each of the candidate models. As η → 0 we recover the equally weighted model combination,

and as η → ∞ the weight on the model that yields the highest realized Sharpe ratio approaches 1. In

our implementation, we follow Kirby and Ostdiek (2012) and consider alternative values of η such that

η = {1, 2, 4, 10}. We refer to the mixing in (5) as the mean-var(δ, η) combination rule. Finally, substituting

equation (5) into (1) yields a more general expression for the mean-var(δ, η) combined estimator:

HComb
t =

1
M∑
m=1

(
µ̂m/̂σm

)η M∑
m=1

(
µ̂m/̂σm

)η
Hm
t . (6)

2.2 Minimum variance model combination

We now consider an alternative performance-based model combination rule based on the minimum vari-

ance portfolio policy. A very large body of literature in portfolio optimization considers this particular

policy; see, for instance, Clarke et al. (2006, 2011) for extensive practitioner-oriented studies on the per-

formance and on the composition of minimum variance portfolios. This policy can be seen as a particular

case of the traditional mean-variance optimization. The mean-variance problem, however, is known to be

very sensitive to estimation of the mean returns (e.g. Jagannathan and Ma, 2003). Very often, the esti-

mation error in the mean returns degrade the overall portfolio performance and introduces an undesirable

level of portfolio turnover. In fact, existing evidence suggest that the performance of optimal portfolios

that do not rely on estimated mean returns is better; see, for instance, DeMiguel et al. (2009).

The minimum variance portfolio problem is defined as

min
w∈<N

w′tH
m
t wt

subject to
N∑
i=1

wi = 1,

(7)
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where wt is the vector of portfolio weights for time t chosen at time t − 1 and Hm
t is a positive-definite

conditional covariance matrix of asset returns obtained with the m-th candidate model for time t and

forecasted at time t− 1. The solution to (7) is defined as wt = ι′(Hm
t )−1/ι′(Hm

t )−1ι, where ι is a vector

of ones.

Upon solving the portfolio problem in (7) for a sample with T observations and adopting a given

specification for the conditional covariance matrix Hm
t , the investor computes the δ-adjusted portfolio

variance as defined in (3). In the minimum variance context, the combined conditional covariance esti-

mator in (1) should privilege the models that yield lower portfolio risk (i.e. lower portfolio variance) and

penalize those that yield higher portfolio risk. In this case, after accounting for the time series adjustment

by means of the δ parameter as well as for the cross section adjustment by means of the η parameter, the

performance-based minimum variance model combination vector λm can be defined as

λm =

(
1
/̂
σ2
m

)η
M∑
m=1

(
1
/̂
σ2
m

)η , m = 1, . . . ,M. (8)

We refer to the mixing in (8) as the min-var(δ, η) combination rule. Finally, substituting equation (8)

into (1) yields a more general expression for the min-var(δ, η) combined estimator:

HComb
t =

1
M∑
m=1

(
1
/̂
σ2
m

)η M∑
m=1

[(
1
/̂
σ2
m

)η
Hm
t

]
. (9)

2.3 Important remarks

The combined conditional covariance estimators in (6) and in (9) use the past performance of each

individual model in delivering portfolios with higher risk-adjusted performance and lower portfolio risk,

respectively, in order to define the combination weights.2 The aggressiveness in the allocation across

alternative models is calibrated by the tuning parameter η. Moreover, the importance given to the

most recent observations in the calculation of portfolio variances is calibrated by the discount factor

δ. Therefore, while the η parameter performs a cross section adjustment on the aggressiveness in the

allocation across alternative models, the discount factor δ performs a time series adjustment as it controls

for the importance of most recent observations.

2Alternative algorithms to combine predictions for the conditional mean based on the past performance of the candidate
models are also proposed in Yang (2004) and Hibon and Evgeniou (2005).
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It is also worth emphasizing four important aspects of the model combination in (6) and (9). First,

the mixing does not require a proxy for the latent conditional covariance matrix. This proxy is usually

defined by means of a realized covariance matrix based on high-frequency data as in Laurent et al. (2012),

Laurent et al. (2013), and Becker et al. (2014). The proposed approach, on the other hand, dispenses the

use of intraday data and can be implemented with data sampled at any frequency. Second, the mixing

rule does not require optimization of the combination weights, which facilitates its implementation in

practice.

Finally, the fourth important aspect of the of the proposed approach to combine multivariate volatility

predictions is that it holds the equally weighted model combination as a particular case (when η = 0).

This specific model combination is found to outperform more sophisticated combination schemes in many

contexts; see, for instance, Clemen (1989), De Menezes et al. (2000), Wallis (2011), and Genre et al. (2013).

Some authors have argued this result is due to the instability of combination weights, which can deteriorate

the performance of optimal combinations; see Kang (1986). This instability has its roots in the sampling

error, which contaminates the estimated weights and is exacerbated by the collinearity that typically

exists among primary forecasts (Diebold, 1989). The imposition of equal weights eliminates variation

in the estimated weights and increases robustness with respect to model uncertainty, time-variation of

parameters, and estimation errors that arise when combination weights have to be estimated (Palm and

Zellner, 1992). Finally, Armstrong (2001) and Timmermann (2006) establish conditions under which

adopting the equally weighted model combination is optimal. Timmermann (2006), for instance, argues

that equal weights are optimal in situations with an arbitrary number of forecasts when the individual

forecast errors have the same variance and identical pairwise correlations. These arguments motivate us

to choose the equally weighted model combination min-var(η = 0) as the main benchmark among all

individual and combined covariance specifications considered in the paper.

2.4 Individual candidate models

In order to implement the model combination rules defined in (6) and (9), it necessary to implement a

set of individual candidate models. For that purpose, we assume that the multivariate system of asset

returns is modeled as Rt = zt(H
m
t )1/2. To model Hm

t , it is possible to consider a broad set of conditional

covariance specifications including multivariate GARCH and SV models; see Asai et al. (2006), Bauwens

et al. (2006), Silvennoinen and Teräsvirta (2009), and Chib et al. (2009). In this paper, we follow Engle
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and Sheppard (2008) and Becker et al. (2014) and restrict our attention to the former class and implement

a set of M = 8 alternative multivariate GARCH specifications widely used in portfolio selection problems:

Exponentially weighted moving average (EWMA): The EWMA model is defined as

Ht = αRt−1
′Rt−1 + (1− α)Ht−1,

where α is a nonnegative parameter. When the α is set to a fixed value of 0.04, the EWMA is equivalent

to the popular RiskmetricsTM approach. Zaffaroni (2008) shows that although it permits sizable compu-

tational gains and provide a simple way to impose positive semi-definitiveness of the resulting conditional

covariance matrices, the RiskmetricsTM delivers non-consistent parameter estimates. Therefore, in our

implementation of the EWMA specification the parameter α is estimated via maximum likelihood; see

details below.

Optimal rolling estimator (ORE): The general rolling estimator is defined asHt =
∞∑
t=1

Ωt−k �Rt−k ′Rt−k,

where Ωt−k is a symmetric matrix of weights and � denotes the element-by-element multiplication. The

optimal weighting scheme proposed in of Foster and Nelson (1996) is given by Ωt−k = α exp (−αk) ι′ι

where ι is a vector of ones. Therefore, the general rolling estimator can be rewritten as

Ht = α exp (−α)Rt−1
′Rt−1 + exp (−α)Ht−1,

where α is a nonnegative parameter. The ORE specification has been applied in many portfolio selec-

tion problems such as in Fleming et al. (2001, 2003) and Pooter et al. (2008). Fleming et al. (2003), in

particular, point out that covariance matrix forecasts based on the ORE specification results in better

portfolios in comparison to those obtained with other (unrestricted) multivariate GARCH models. The

authors argue that the smoothness of the rolling estimator as the main reason for this.

Scalar VECH: The scalar VECH specification of Bollerslev et al. (1988) is defined as

Ht = C ′C + αRt−1Rt−1
′ + βHt−1.
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Instead of estimating N(N + 1)/2 unique elements of C, we employ the variance targeting technique

as suggested in Engle and Mezrich (1996). The general idea is to estimate the intercept matrix by an

auxiliary estimator that is given by Ĉ ′Ĉ = S̄ (1− α− β), where S̄ = 1
T

T∑
t=1

RtRt
′, thus yielding the

variance-targeting scalar VECH model

Ht = S̄ (1− α− β) + αRt−1Rt−1
′ + βHt−1,

which is covariance-stationary provided that α+ β < 1.

Orthogonal GARCH (O-GARCH): The O-GARCH model of Alexander (2001) belongs to a class of

factor models and is able to achieve significant computational gains via dimensionality reduction. The

O-GARCH model is given by Σt = WΩtW , where W is a N × k matrix whose columns are given by the

first k eigenvectors of the t×N matrix of asset returns, and Ωt is a k× k diagonal matrix whose elements

are given by hfkt where hfkt is the conditional variance of the k-th principal component and follows a

GARCH(1,1) process. We implement the O-GARCH model using 3 principal components.

Conditional correlation models: This class of models is defined as Ht = DtΨtDt, where Dt is a

N × N diagonal matrix with diagonal elements given by hi,t, where hi,t is the conditional variance of

the i-th asset and follows a GARCH(1,1) process, and Ψt is a symmetric conditional correlation matrix

with elements ρij,t, where ρii,t = 1, i, j = 1, . . . , N . We consider 4 alternative specifications to model Ψt

: (i) the constant conditional correlation (CCC) model of Bollerslev (1990), (ii) the dynamic conditional

correlation (DCC) model of Engle (2002), (iii) the asymmetric DCC (ASYDCC) of Cappiello et al. (2006),

(iv) the dynamic equicorrelation (DECO) model of Engle and Kelly (2012). Engle and Colacito (2006)

and Engle and Sheppard (2008) study the performance of alternative conditional correlation models in

portfolio selection problems.

Multivariate GARCH models are typically estimated via quasi maximum likelihood (QML). However,

this estimator is found to be severely biased in large dimensions; see, for instance, Engle et al. (2008)

and Hafner and Reznikova (2012). In this paper, the parameters of the EWMA, ORE, and VECH

specifications are estimated with the composite likelihood (CL) method proposed by Engle et al. (2008).

As for the conditional correlation models, their estimation can be conveniently divided into volatility part

and correlation part. The volatility part refers to estimating the univariate conditional variances which
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is done by QML assuming Gaussian innovations. The parameters of the correlation matrix in the DCC

and ASYDCC models are estimated using the CL method. As pointed out by Engle et al. (2008), the CL

estimator provides more accurate parameter estimates in comparison to the two-step procedure proposed

by Engle (2002), especially in large problems.

Finally, it is important to emphasize that other multivariate GARCH specifications, apart from those

considered in this paper, have been proposed in the literature; see Bauwens et al. (2006) and Silvennoinen

and Teräsvirta (2009) for reviews. In this sense, the model set considered in this paper can be increased in

many alternative ways.3 Even though we consider these alternative specifications to be very interesting,

we focus on a model set that includes 8 of the most widely used specifications. The computational effort

to perform rolling window estimations of each of these 8 specifications for the high dimensional data sets

considered in this paper is already immense, which limits to a large extent our capacity to increase the

model set.

3 Empirical application

3.1 Data sets

We conduct an empirical investigation on the performance of both mean-variance and minimum variance

portfolios obtained with the mean-var(δ, η) and min-var(δ, η) model combinations defined in (6) and (9),

respectively. The investigation in based on daily observations of 4 alternative data sets from the global

stock markets from 01/01/2004 until 31/12/2013. The first data set consists of closing prices of the 50

mostly traded stocks belonging to the US stock market index SP100 (50SP). The second data set consists

of 100 US industry portfolios (100Ind) obtained from Ken French’s web site. Both data sets have T = 2517

observations. The third data set consists of closing prices of 45 stocks belonging to the European stock

market index Eurostoxx (45Euro). Finally, the fourth data sets consists of closing prices of 17 stocks

belonging to the Asian stock market index STI (17STI). These last two data sets have, respectively,

T = 2504 and T = 2520 observations.

3Important contributions in the literature on multivariate volatility models include the regime switching DCC of Pelletier
(2006), the Wishart stochastic volatility model of Philipov and Glickman (2006a,b), the semiparametric model for the
correlation dynamics of Hafner et al. (2006), the generalized DCC model of Billio and Caporin (2009) and Hafner and
Franses (2009), the factor-DCC model of Zhang and Chan (2009), the DCC-MIDAS of Colacito et al. (2011), the HEAVY
models of Noureldin et al. (2012), the factor-spline-GARCH model of Rangel and Engle (2012), the heterogeneous ASYDCC
model of Asai (2013), the multivariate rotated ARCH model of Noureldin et al. (2014), the realized beta GARCH model of
Hansen et al. (2014), the dynamic factor multivariate GARCH model of Santos and Moura (2014), the smooth transition
conditional correlation model of Silvennoinen and Teräsvirta (2015), among many others.
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3.2 Methodology for evaluating portfolio performance and implementation details

In order to implement the individual models as well as the proposed mean-var(δ, η) and min-var(δ, η)

model combinations, we employ an expanding window procedure that works as follows. Departing from

the first t = 1500 observations, all models described in section 2.4 are estimated and their corresponding

one-step-ahead forecasts of the conditional covariance matrix are obtained. We obtain mean-variance

and minimum variance portfolio weights for each of the models along the t observations and compute

the one-step-ahead forecast of the conditional combined conditional covariance estimator using the mean-

var(δ, η) and min-var(δ, η) combination rule in (6) and (9), respectively, for δ = {1, 0.95, 0.85, 0.80, 0.75}

and η = {0, 1, 2, 4, 10}. It is worth noting that when η = 0 the min-var(δ, η) combination rule corresponds

to the equally weighted model combination irrespective of the value of δ. Finally, we add one observation

to the estimation window and repeat the process until the end of the data set is reached. We end up with

a sample of T − t out-of-sample observations.

It is important to notice that the implementation procedure described above implies that the each

candidate model is evaluated in terms of its in-sample portfolio performance. This choice is motivated

by two reasons. First, it simplifies implementation as the same estimation window used to estimate the

parameters of each individual model is also used to evaluate portfolio performance. Second, and most

importantly, we performed extensive robustness checks to evaluate the gains (or lack of) from changing to

past out-of-sample portfolio performance, despite higher computational cost. The results are very similar

in comparison to those based on the past in-sample performance of each individual model, which makes

us confident to employ this approach. The results based on an out-of-sample evaluation of individual

models are available upon request.

We use the out-of-sample observations to evaluate the mean-variance and minimum variance portfolio

performance in terms of average return (µ̂) and standard deviation (volatility) of returns (σ̂). These

statistics are calculated as follows:

µ̂ =
1

T − 1

T−1∑
t=1

w′tRt+1

σ̂ =

√√√√ 1

T − 1

T−1∑
t=1

(w′tRt+1 −Rp)2.

An additional aspect that must be taken into account is the impact of transaction costs on the
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performance of optimal portfolios (Han, 2006). For that purpose, we follow Della Corte et al. (2008)

and Thornton and Valente (2012) and compute the portfolio return net of transaction costs (Rnet
p,t ). This

calculation is performed as

Rnet
p,t = (1− c · turnovert)

(
1 + w′tRt+1

)
− 1, (10)

where c is the fee that must be paid for each transaction and turnovert is the portfolio turnover at time

t, defined as the fraction of wealth traded between periods t and t+ 1, i.e

turnovert =
N∑
j=1

(|wj,t+1 − wj,t|).

We follow Kirby and Ostdiek (2012) and evaluate the portfolio performance considering alternative levels

for the transaction cost fee c. More specifically, we consider the instances in which c = 0 basis points

(bp), i.e. no transaction costs involved, c = 10 bp and c = 20 bp. Upon computing the average and the

standard deviation of the portfolio return net of transaction costs for each level of c, we report the average

portfolio turnover over all out-of-sample observations as well as the risk-adjusted net return measured by

the Sharpe ratio, which is defined as

SR =
R̄p

net

σnet
, (11)

where R̄p
net

and σnet are, respectively, the average and the standard deviation of portfolio returns net of

transaction costs.

In order to assess the relative performance of the model combination approach proposed in the paper,

we consider as the main benchmark specification the min-var(η = 0) combination, which corresponds to

the equally weighted model combination. The stationary bootstrap of Politis and Romano (1994) with

B=1000 resamples and block size b = 5 was used to test the statistical significance of differences between

the standard deviation of mean-variance and minimum variance portfolio returns obtained with each

individual model and with each model combination with respect to those obtained with the benchmark.4

The methodology suggested in Ledoit and Wolf (2008) was used to obtain p-values.

4We performed extensive robustness checks regarding the choice of the block size. More specifically, we performed the test
with the block size varying from 1 to 100. The results are very similar to those reported here. Moreover, we also performed
the test of the statistical significance of differences in the variance of minimum variance portfolio returns. The results are
also similar to those obtained with the standard deviation and are available upon request.
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3.3 Results

Table 1 to 4 report for each of the data sets considered in the paper performance statistics for the mean-

variance and minimum variance portfolios obtained with each of the individual models as well as with their

combinations according to the mean-var(δ, η) and min-var(δ, η) criteria, respectively. In each Table, the

left-hand side reports the performance statistics for the mean-variance portfolios, whereas the right-hand

side reports the figures for the minimum variance portfolios.

Let us initially consider the performance of the minimum variance portfolios obtained with individual

multivariate GARCH models as well as with their min-var(δ, η) combinations. The first striking result in

Tables 1 to 4 is that all individual models delivered minimum variance portfolios with higher risk with

respect to those obtained with the model combinations. This result is true for all data sets. First, when

comparing the individual models with respect to benchmark, we observe that a simple model averaging

is able to deliver less risky minimum variance portfolio with respect to the best single model in all cases,

and that these differences are statistically significant. Second, when comparing among alternative model

combinations, we find that varying the δ and η parameters bring improvements in many instances. We

observe that many alternative model combinations outperform the simple model averaging. In general,

lowering the value of δ (i.e. putting more weight on the recent performance of individual models) and

increasing the value of η (i.e. putting more weight on the best single models) lead to improvement with

respect to the min-var(η = 0) specification in terms of portfolio risk. The best overall result in all data sets

in terms of standard deviation of portfolio returns is achieved by the min-var(δ=0.75,η=10) combination.

On the other hand, we observe that putting more weight on the recent performance of individual models

and putting more weight on the best single models tend to increase substantially the portfolio turnover.

The comparison of other performance statistics such as Sharpe ratios also suggest that min-var(δ, η) model

combinations perform at least equivalently with respect to individual models. These numbers suggest that

the proposed model combinations is able to not deliver less risky portfolio but also attractive risk-adjusted

returns and portfolio turnover that are at least equivalent to those obtained by single models.

We now turn our attention to the analysis of the mean-variance portfolios obtained with individual

multivariate GARCH models as well as with their mean-var(δ, η) combinations. The main concern in

this case is on the risk-adjusted performance of the resulting mean-variance portfolios, specially when

transaction costs are taken into account. We observe in Tables 1 to 4 that, in the absence of transaction

costs, the vast majority of mean-var(δ, η) combinations yield statistically higher SR in comparison to not
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only the equally weighted combination but also higher than those obtained with individual models. Even

more importantly, this result also holds when transaction costs are taken into account. We observe that

this result is more evident when the level of transaction costs is below 20 b.p. For instance, in the case of

the 50SP data set, the SR of mean-variance portfolios based on portfolio returns net of transaction costs

of 10 b.p. is 0.205 for the mean-var(δ = 0.80, η = 10) combination, whereas the best result obtained with

an individual model is 0.121. Similar results are obtained with the remaining data sets.

Finally, as an illustration, we report in Table 5 the average and standard deviation of combination

weights for each min-var(δ, η) specification. As expected, we observe that the best performing models

tend to receive more weights in the model combination. This result is very much evident specially for the

EWMA, ORE, and CCC specifications as they have weights higher than 20% in many instances.

4 Concluding remarks

Modeling and forecasting the covariance matrix of portfolio returns is of paramount importance in many

economic and financial problems such as asset pricing, portfolio optimization and market risk manage-

ment. In practice, however, the investor faces uncertainty on which is the most appropriate specification to

model and to perform these tasks. To alleviate this problem, we put forward a novel approach to combine

multivariate volatility predictions from alternative conditional covariance models. The proposed combi-

nation rule is explicitly built to exploit model complementarities and is motivated by the fact this class of

models is often applied in portfolio selection problems. Four major advantages of this approach are that i)

does not require a proxy for the latent conditional covariance matrix, ii) does not require optimization of

the combination weights, iii) holds the equally-weighted model combination as a particular case, and iv)

accommodates alternative portfolio policies as well as alternative portfolio characteristics for defining the

mixing. Our empirical evidence based on 4 data sets with cross section dimensions ranging from 17 to 100

assets over a 10-year time span confirms that mean-variance and minimum variance portfolios obtained

with the combined conditional covariance estimators have improved performance in terms of risk-adjusted

returns and are substantially and statistically less risky with respect to all individual models considered.

The results are robust to the presence of transaction costs.
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Table 1: Mean-variance and minimum variance portfolio performance: individual models vs. model combinations for the
SP50 data set

The Table reports performance statistics for mean-variance and minimum variance portfolios obtained with a set of individual models as well as with model combinations
based on the mean-var(δ, η) and min-var(δ, η) combination rules in (6) and (9), respectively, for δ = {1, 0.95, 0.85, 0.80, 0.75} and η = {0, 1, 2, 4, 10}. The individual
models are the following multivariate GARCH specifications: exponentially weighted moving average (EWMA), optimal rolling estimator (ORE), VECH, orthogonal
GARCH (O-GARCH), constant conditional correlation (CCC), dynamic conditional correlation (DCC), dynamic equicorrelation (DECO), and asymmetric DCC
(ASYDCC). The figures are based on daily observations from 01/01/2004 until 31/12/2013. SR denotes the Sharpe ratio, which is computed using alternative levels
of the transaction cost fee c: c =0 basis points (b.p.), c =10 b.p., and c =20 b.p. The data set consists of closing prices of the 50 mostly traded stocks belonging to
the US stock market index SP100 (50SP). All figures are based on out-of-sample daily observations. Optimal portfolios are re-balanced on a daily basis.

Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.) Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.)

Mean-variance portfolios Minimum variance portfolios

Individual models
EWMA 0.048 0.468 0.111 0.103 0.079 0.055 0.049 0.467 0.111 0.105 0.081 0.057
ORE 0.051 0.455 0.063 0.111 0.097 0.083 0.051 0.453 0.062 0.113 0.099 0.086
VECH 0.045 0.524 0.299 0.085 0.027 -0.030 0.044 0.524 0.297 0.084 0.027 -0.029
O-GARCH 0.058 0.451 0.036 0.129 0.121 0.113 0.056 0.457 0.033 0.123 0.116 0.109
CCC 0.043 0.483 0.291 0.090 0.030 -0.031 0.042 0.481 0.284 0.087 0.028 -0.031
DCC 0.048 0.854 1.096 0.057 -0.072 -0.198 0.047 0.876 1.128 0.054 -0.075 -0.202
DECO 0.039 0.501 0.181 0.078 0.042 0.006 0.037 0.501 0.181 0.074 0.038 0.002
ASY-DCC 0.046 0.479 0.223 0.095 0.049 0.002 0.046 0.476 0.221 0.097 0.050 0.004

Model combinations

δ=1,η=0 (benchmark) 0.047 0.441 0.152 0.106 0.071 0.037 0.046 0.441 0.151 0.105 0.070 0.036
δ=1,η=1 0.048 0.441 0.153 0.110 0.075 0.040 0.047 0.437 0.132 0.108 0.077 0.047
δ=1,η=2 0.049 0.442 0.154 0.111 0.076 0.041 0.047 0.436 0.127 0.109 0.079 0.050
δ=1,η=4 0.049 0.445 0.158 0.111 0.075 0.039 0.047 0.437 0.132 0.108 0.078 0.047
δ=1,η=10 0.047 0.457 0.166 0.103 0.067 0.031 0.045 0.447 0.180 0.102 0.061 0.021
δ=0.95,η=1 0.063 0.443 0.188 0.141 0.099 0.056 0.047 0.432 0.125 0.109 0.080 0.051
δ=0.95,η=2 0.074 0.449 0.236 0.166 0.113 0.060 0.047 0.426 0.116 0.111 0.084 0.056
δ=0.95,η=4 0.090 0.461 0.311 0.194 0.127 0.059 0.047 0.418 0.114 0.113 0.085 0.058
δ=0.95,η=10 0.109 0.484 0.406 0.225 0.141 0.056 0.045 0.407 0.136 0.111 0.077 0.044
δ=0.85,η=1 0.076 0.443 0.235 0.171 0.117 0.064 0.046 0.424 0.135 0.109 0.077 0.045
δ=0.85,η=2 0.098 0.446 0.339 0.220 0.144 0.067 0.046 0.413 0.144 0.112 0.076 0.041
δ=0.85,η=4 0.125 0.457 0.468 0.273 0.171 0.067 0.045 0.396 0.178 0.114 0.069 0.024
δ=0.85,η=10 0.148 0.476 0.578 0.311 0.191 0.067 0.044 0.376 0.255 0.117 0.049 -0.018
δ=0.80,η=1 0.080 0.443 0.256 0.181 0.123 0.065 0.046 0.421 0.143 0.109 0.075 0.041
δ=0.80,η=2 0.106 0.446 0.381 0.238 0.152 0.066 0.046 0.406 0.162 0.112 0.072 0.032
δ=0.80,η=4 0.138 0.459 0.532 0.300 0.185 0.067 0.045 0.387 0.212 0.117 0.061 0.007
δ=0.80,η=10 0.164 0.484 0.659 0.339 0.205 0.065 0.044 0.366 0.308 0.119 0.035 -0.048
δ=0.75,η=1 0.083 0.444 0.274 0.187 0.125 0.063 0.046 0.418 0.152 0.110 0.073 0.037
δ=0.75,η=2 0.111 0.448 0.416 0.249 0.155 0.062 0.046 0.401 0.183 0.114 0.068 0.022
δ=0.75,η=4 0.145 0.463 0.588 0.313 0.186 0.057 0.045 0.379 0.248 0.119 0.053 -0.013
δ=0.75,η=10 0.170 0.483 0.726 0.353 0.204 0.050 0.042 0.357 0.364 0.119 0.016 -0.084

18



Table 2: Mean-variance and minimum variance portfolio performance: individual models vs. model combinations for the
100Ind data set

The Table reports performance statistics for mean-variance and minimum variance portfolios obtained with a set of individual models as well as with model combinations
based on the mean-var(δ, η) and min-var(δ, η) combination rules in (6) and (9), respectively, for δ = {1, 0.95, 0.85, 0.80, 0.75} and η = {0, 1, 2, 4, 10}. The individual
models are the following multivariate GARCH specifications: exponentially weighted moving average (EWMA), optimal rolling estimator (ORE), VECH, orthogonal
GARCH (O-GARCH), constant conditional correlation (CCC), dynamic conditional correlation (DCC), dynamic equicorrelation (DECO), and asymmetric DCC
(ASYDCC). The figures are based on daily observations from 01/01/2004 until 31/12/2013. SR denotes the Sharpe ratio, which is computed using alternative levels
of the transaction cost fee c: c =0 basis points (b.p.), c =10 b.p., and c =20 b.p. The data set consists of 100 US industry portfolios (100Ind) obtained from Ken
French’s web site. All figures are based on out-of-sample daily observations. Optimal portfolios are re-balanced on a daily basis.

Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.) Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.)

Mean-variance portfolios Minimum variance portfolios

Individual models
EWMA 0.080 0.563 0.684 0.141 0.020 -0.099 0.080 0.562 0.680 0.143 0.022 -0.096
ORE 0.069 0.633 0.085 0.110 0.097 0.083 0.069 0.631 0.075 0.110 0.098 0.086
VECH 0.077 0.612 1.288 0.125 -0.084 -0.281 0.077 0.606 1.265 0.127 -0.080 -0.275
O-GARCH 0.056 0.724 0.098 0.077 0.064 0.051 0.055 0.728 0.090 0.076 0.064 0.052
CCC 0.065 0.583 1.146 0.112 -0.083 -0.272 0.065 0.581 1.139 0.112 -0.082 -0.270
DCC 0.042 1.010 4.650 0.042 -0.392 -0.716 0.044 1.011 4.599 0.044 -0.384 -0.703
DECO 0.056 0.688 0.645 0.081 -0.011 -0.104 0.057 0.674 0.629 0.085 -0.007 -0.100
ASY-DCC 0.059 0.833 1.722 0.071 -0.134 -0.329 0.058 0.829 1.704 0.070 -0.134 -0.327

Model combinations

δ=1,η=0 (benchmark) 0.069 0.509 0.683 0.137 0.003 -0.128 0.069 0.506 0.675 0.136 0.003 -0.127
δ=1,η=1 0.070 0.513 0.520 0.137 0.036 -0.064 0.070 0.510 0.586 0.137 0.022 -0.091
δ=1,η=2 0.071 0.520 0.455 0.136 0.049 -0.038 0.070 0.515 0.540 0.137 0.032 -0.072
δ=1,η=4 0.072 0.533 0.378 0.134 0.064 -0.007 0.071 0.523 0.514 0.136 0.038 -0.059
δ=1,η=10 0.072 0.577 0.213 0.126 0.089 0.052 0.073 0.541 0.526 0.135 0.038 -0.059
δ=0.95,η=1 0.110 0.499 1.019 0.221 0.017 -0.176 0.070 0.493 0.633 0.142 0.014 -0.111
δ=0.95,η=2 0.145 0.513 1.427 0.283 0.005 -0.244 0.071 0.483 0.645 0.147 0.014 -0.117
δ=0.95,η=4 0.177 0.567 1.907 0.312 -0.023 -0.302 0.070 0.467 0.752 0.150 -0.010 -0.166
δ=0.95,η=10 0.214 0.628 2.638 0.341 -0.072 -0.369 0.063 0.457 1.071 0.139 -0.093 -0.310
δ=0.85,η=1 0.137 0.494 1.335 0.277 0.007 -0.243 0.070 0.479 0.707 0.146 -0.001 -0.146
δ=0.85,η=2 0.187 0.501 1.976 0.374 -0.019 -0.350 0.071 0.456 0.859 0.155 -0.033 -0.215
δ=0.85,η=4 0.236 0.527 2.730 0.447 -0.064 -0.419 0.069 0.423 1.231 0.164 -0.125 -0.388
δ=0.85,η=10 0.296 0.560 3.725 0.528 -0.115 -0.479 0.064 0.403 1.853 0.158 -0.282 -0.601
δ=0.80,η=1 0.144 0.493 1.488 0.293 -0.008 -0.283 0.069 0.472 0.760 0.147 -0.014 -0.171
δ=0.80,η=2 0.200 0.494 2.245 0.404 -0.047 -0.415 0.070 0.445 0.995 0.157 -0.066 -0.280
δ=0.80,η=4 0.254 0.517 3.084 0.491 -0.094 -0.482 0.068 0.406 1.494 0.167 -0.195 -0.509
δ=0.80,η=10 0.318 0.554 4.121 0.575 -0.145 -0.547 0.062 0.383 2.222 0.162 -0.379 -0.717
δ=0.75,η=1 0.152 0.492 1.611 0.308 -0.018 -0.313 0.069 0.467 0.822 0.147 -0.028 -0.200
δ=0.75,η=2 0.212 0.491 2.454 0.432 -0.064 -0.459 0.069 0.435 1.144 0.158 -0.104 -0.352
δ=0.75,η=4 0.270 0.503 3.370 0.538 -0.116 -0.524 0.066 0.392 1.757 0.167 -0.270 -0.626
δ=0.75,η=10 0.332 0.540 4.376 0.615 -0.163 -0.573 0.059 0.367 2.561 0.161 -0.471 -0.813
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Table 3: Mean-variance and minimum variance portfolio performance: individual models vs. model combinations for the
45Euro data set

The Table reports performance statistics for mean-variance and minimum variance portfolios obtained with a set of individual models as well as with model combinations
based on the mean-var(δ, η) and min-var(δ, η) combination rules in (6) and (9), respectively, for δ = {1, 0.95, 0.85, 0.80, 0.75} and η = {0, 1, 2, 4, 10}. The individual
models are the following multivariate GARCH specifications: exponentially weighted moving average (EWMA), optimal rolling estimator (ORE), VECH, orthogonal
GARCH (O-GARCH), constant conditional correlation (CCC), dynamic conditional correlation (DCC), dynamic equicorrelation (DECO), and asymmetric DCC
(ASYDCC). The figures are based on daily observations from 01/01/2004 until 31/12/2013. SR denotes the Sharpe ratio, which is computed using alternative levels
of the transaction cost fee c: c =0 basis points (b.p.), c =10 b.p., and c =20 b.p. The data set consists of closing prices of 45 stocks belonging to the European stock
market index Eurostoxx (45Euro). All figures are based on out-of-sample daily observations. Optimal portfolios are re-balanced on a daily basis.

Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.) Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.)

Mean-variance portfolios Minimum variance portfolios

Individual models
EWMA 0.058 0.816 0.214 0.071 0.046 0.020 0.060 0.814 0.212 0.074 0.049 0.023
ORE 0.057 0.812 0.104 0.070 0.059 0.046 0.057 0.810 0.100 0.070 0.060 0.047
VECH 0.057 0.844 0.557 0.067 0.003 -0.063 0.054 0.843 0.549 0.064 0.000 -0.065
O-GARCH 0.034 0.954 0.105 0.035 0.026 0.015 0.032 0.952 0.101 0.033 0.024 0.013
CCC 0.060 0.814 0.496 0.074 0.014 -0.047 0.060 0.815 0.478 0.074 0.017 -0.042
DCC 0.023 1.452 2.748 0.016 -0.171 -0.349 0.004 1.460 2.734 0.002 -0.182 -0.356
DECO 0.038 0.865 0.416 0.044 -0.002 -0.050 0.044 0.909 0.399 0.048 0.005 -0.038
ASY-DCC 0.059 0.841 0.560 0.071 0.006 -0.061 0.056 0.839 0.556 0.067 0.002 -0.064

Model combinations

δ=1,η=0 (benchmark) 0.055 0.754 0.346 0.073 0.029 -0.017 0.054 0.759 0.346 0.072 0.028 -0.018
δ=1,η=1 0.057 0.752 0.309 0.076 0.037 -0.004 0.056 0.757 0.325 0.074 0.033 -0.010
δ=1,η=2 0.059 0.755 0.326 0.077 0.036 -0.007 0.057 0.756 0.317 0.076 0.036 -0.006
δ=1,η=4 0.059 0.771 0.380 0.077 0.029 -0.020 0.059 0.757 0.321 0.079 0.038 -0.005
δ=1,η=10 0.061 0.803 0.472 0.076 0.018 -0.040 0.062 0.769 0.371 0.081 0.034 -0.014
δ=0.95,η=1 0.101 0.763 0.495 0.132 0.069 0.004 0.056 0.748 0.312 0.075 0.034 -0.007
δ=0.95,η=2 0.135 0.769 0.676 0.176 0.090 0.002 0.056 0.739 0.306 0.076 0.037 -0.005
δ=0.95,η=4 0.169 0.794 0.948 0.213 0.095 -0.024 0.057 0.726 0.318 0.078 0.036 -0.008
δ=0.95,η=10 0.204 0.845 1.258 0.242 0.094 -0.053 0.057 0.706 0.376 0.081 0.029 -0.024
δ=0.85,η=1 0.128 0.769 0.594 0.166 0.090 0.013 0.057 0.731 0.332 0.079 0.035 -0.010
δ=0.85,η=2 0.179 0.785 0.871 0.228 0.118 0.007 0.059 0.710 0.361 0.083 0.034 -0.017
δ=0.85,η=4 0.242 0.817 1.316 0.296 0.136 -0.024 0.060 0.680 0.442 0.088 0.025 -0.040
δ=0.85,η=10 0.310 0.885 1.771 0.350 0.152 -0.048 0.056 0.643 0.620 0.088 -0.007 -0.102
δ=0.80,η=1 0.138 0.770 0.631 0.179 0.098 0.016 0.058 0.724 0.347 0.080 0.034 -0.014
δ=0.80,η=2 0.194 0.787 0.937 0.246 0.128 0.010 0.059 0.697 0.399 0.085 0.029 -0.028
δ=0.80,η=4 0.262 0.816 1.399 0.320 0.150 -0.021 0.059 0.662 0.517 0.089 0.013 -0.064
δ=0.80,η=10 0.328 0.871 1.842 0.377 0.166 -0.044 0.055 0.622 0.738 0.089 -0.028 -0.144
δ=0.75,η=1 0.148 0.769 0.667 0.192 0.107 0.020 0.058 0.717 0.365 0.081 0.031 -0.020
δ=0.75,η=2 0.209 0.784 0.998 0.266 0.140 0.013 0.059 0.686 0.442 0.086 0.023 -0.041
δ=0.75,η=4 0.277 0.814 1.483 0.340 0.159 -0.023 0.058 0.647 0.595 0.089 -0.001 -0.092
δ=0.75,η=10 0.341 0.866 1.883 0.394 0.178 -0.039 0.053 0.603 0.847 0.087 -0.051 -0.187
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Table 4: Mean-variance and minimum variance portfolio performance: individual models vs. model combinations for the
17STI data set

The Table reports performance statistics for mean-variance and minimum variance portfolios obtained with a set of individual models as well as with model combinations
based on the mean-var(δ, η) and min-var(δ, η) combination rules in (6) and (9), respectively, for δ = {1, 0.95, 0.85, 0.80, 0.75} and η = {0, 1, 2, 4, 10}. The individual
models are the following multivariate GARCH specifications: exponentially weighted moving average (EWMA), optimal rolling estimator (ORE), VECH, orthogonal
GARCH (O-GARCH), constant conditional correlation (CCC), dynamic conditional correlation (DCC), dynamic equicorrelation (DECO), and asymmetric DCC
(ASYDCC). The figures are based on daily observations from 01/01/2004 until 31/12/2013. SR denotes the Sharpe ratio, which is computed using alternative levels
of the transaction cost fee c: c =0 basis points (b.p.), c =10 b.p., and c =20 b.p. The data set consists of closing prices of 17 stocks belonging to the Asian stock
market index STI (17STI). All figures are based on out-of-sample daily observations. Optimal portfolios are re-balanced on a daily basis.

Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.) Mean return (%) Std. dev. (%) Turnover SR (c=0 b.p.) SR (c=10 b.p.) SR (c=20 b.p.)

Mean-variance portfolios Minimum variance portfolios

Individual models
EWMA 0.033 0.727 0.061 0.045 0.036 0.028 0.033 0.705 0.060 0.046 0.037 0.029
ORE 0.033 0.729 0.057 0.045 0.037 0.029 0.033 0.707 0.056 0.047 0.038 0.030
VECH 0.035 0.734 0.213 0.048 0.018 -0.011 0.033 0.703 0.207 0.047 0.017 -0.013
O-GARCH 0.031 0.756 0.053 0.042 0.034 0.027 0.031 0.727 0.050 0.042 0.035 0.028
CCC 0.045 0.710 0.197 0.063 0.035 0.007 0.042 0.689 0.205 0.061 0.031 0.001
DCC 0.035 1.154 1.246 0.030 -0.078 -0.184 0.042 1.154 1.214 0.037 -0.068 -0.170
DECO 0.031 0.724 0.176 0.043 0.019 -0.006 0.023 0.732 0.171 0.031 0.007 -0.016
ASY-DCC 0.041 0.715 0.145 0.057 0.035 0.015 0.039 0.699 0.149 0.056 0.034 0.013

Model combinations

δ=1,η=0 (benchmark) 0.038 0.698 0.147 0.054 0.032 0.011 0.035 0.671 0.146 0.052 0.030 0.008
δ=1,η=1 0.038 0.696 0.124 0.055 0.037 0.019 0.036 0.670 0.122 0.053 0.034 0.016
δ=1,η=2 0.039 0.696 0.115 0.055 0.038 0.022 0.036 0.670 0.114 0.054 0.036 0.019
δ=1,η=4 0.039 0.696 0.112 0.056 0.039 0.023 0.037 0.669 0.113 0.055 0.037 0.020
δ=1,η=10 0.040 0.699 0.119 0.057 0.039 0.022 0.038 0.670 0.126 0.057 0.037 0.019
δ=0.95,η=1 0.054 0.700 0.197 0.077 0.048 0.020 0.034 0.662 0.124 0.052 0.033 0.014
δ=0.95,η=2 0.069 0.710 0.287 0.097 0.055 0.015 0.034 0.656 0.117 0.051 0.033 0.015
δ=0.95,η=4 0.084 0.734 0.393 0.114 0.060 0.007 0.032 0.647 0.117 0.050 0.031 0.013
δ=0.95,η=10 0.101 0.751 0.483 0.134 0.069 0.005 0.029 0.632 0.137 0.046 0.024 0.002
δ=0.85,η=1 0.072 0.702 0.234 0.102 0.069 0.035 0.033 0.651 0.131 0.051 0.030 0.010
δ=0.85,η=2 0.101 0.716 0.357 0.141 0.091 0.041 0.031 0.636 0.136 0.048 0.026 0.005
δ=0.85,η=4 0.133 0.736 0.503 0.181 0.112 0.043 0.026 0.614 0.161 0.043 0.016 -0.010
δ=0.85,η=10 0.159 0.760 0.626 0.210 0.127 0.044 0.019 0.584 0.227 0.033 -0.007 -0.046
δ=0.80,η=1 0.077 0.702 0.249 0.110 0.074 0.038 0.032 0.645 0.136 0.050 0.028 0.007
δ=0.80,η=2 0.110 0.718 0.389 0.153 0.098 0.044 0.029 0.626 0.149 0.047 0.022 -0.002
δ=0.80,η=4 0.142 0.739 0.546 0.192 0.117 0.043 0.024 0.600 0.189 0.040 0.007 -0.024
δ=0.80,η=10 0.173 0.758 0.686 0.229 0.137 0.046 0.017 0.570 0.275 0.030 -0.019 -0.067
δ=0.75,η=1 0.081 0.704 0.266 0.115 0.077 0.039 0.032 0.640 0.142 0.050 0.027 0.005
δ=0.75,η=2 0.116 0.717 0.417 0.161 0.102 0.044 0.028 0.617 0.165 0.046 0.018 -0.008
δ=0.75,η=4 0.148 0.737 0.584 0.201 0.122 0.042 0.022 0.587 0.220 0.038 0.000 -0.037
δ=0.75,η=10 0.180 0.764 0.729 0.236 0.140 0.044 0.019 0.554 0.321 0.033 -0.025 -0.082
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Table 5: Combination weights: min-var(δ, η) combination rule

The Table reports the average and the standard deviation of the min-var(δ, η) combination weights for δ = {1, 0.95, 0.85}
and η = {1, 2, 4, 10}. The individual models are the following multivariate GARCH specifications: exponentially weighted
moving average (EWMA), optimal rolling estimator (ORE), VECH, orthogonal GARCH (O-GARCH), constant con-
ditional correlation (CCC), dynamic conditional correlation (DCC), dynamic equicorrelation (DECO), and asymmetric
DCC (ASYDCC). The figures are based on daily observations of 4 data sets from the global stock markets from 01/01/2004
until 31/12/2013. The first data set consists of closing prices of the 50 mostly traded stocks belonging to the US stock
market index SandP100 (50SandP). The second data set consists of 100 US industry portfolios (100Ind) obtained from
Ken French’s web site. The third data set consists of closing prices of 45 stocks belonging to the European stock market
index Eurostoxx (45Euro). Finally, the fourth data sets consists of closing prices of 17 stocks belonging to the Asian
stock market index STI (17STI). All figures are based on out-of-sample daily observations.

EWMA ORE VECH OGARCH CCC DCC DECO ASYDCC
Avg. weight Std. dev. Avg. weight Std. dev. Avg. weight Std. dev. Avg. weight Std. dev. Avg. weight Std. dev. Avg. weight Std. dev. Avg. weight Std. dev. Avg. weight Std. dev.

Data set: 50SandP
min-var(δ=1,η=1) 0.135 0.000 0.148 0.001 0.099 0.002 0.124 0.002 0.154 0.001 0.053 0.002 0.139 0.001 0.149 0.001
min-var(δ=1,η=2) 0.136 0.001 0.165 0.002 0.074 0.003 0.115 0.003 0.178 0.002 0.021 0.001 0.144 0.001 0.167 0.003
min-var(δ=1,η=4) 0.128 0.002 0.187 0.005 0.037 0.003 0.092 0.005 0.219 0.005 0.003 0.000 0.143 0.002 0.192 0.007
min-var(δ=1,η=10) 0.083 0.004 0.216 0.020 0.004 0.001 0.037 0.006 0.319 0.014 0.000 0.000 0.111 0.004 0.230 0.016
min-var(δ=0.95,η=1) 0.135 0.018 0.149 0.020 0.123 0.021 0.140 0.028 0.145 0.018 0.045 0.013 0.127 0.020 0.136 0.017
min-var(δ=0.95,η=2) 0.137 0.036 0.166 0.044 0.114 0.039 0.149 0.059 0.157 0.038 0.016 0.010 0.122 0.037 0.139 0.036
min-var(δ=0.95,η=4) 0.133 0.065 0.192 0.099 0.096 0.065 0.163 0.119 0.170 0.079 0.002 0.004 0.107 0.066 0.136 0.073
min-var(δ=0.95,η=10) 0.115 0.120 0.244 0.240 0.066 0.115 0.187 0.221 0.184 0.180 0.000 0.000 0.079 0.113 0.125 0.155
min-var(δ=0.85,η=1) 0.134 0.031 0.147 0.033 0.124 0.034 0.141 0.044 0.145 0.031 0.048 0.024 0.126 0.033 0.136 0.030
min-var(δ=0.85,η=2) 0.134 0.059 0.161 0.068 0.118 0.065 0.152 0.091 0.155 0.065 0.021 0.025 0.120 0.063 0.139 0.063
min-var(δ=0.85,η=4) 0.128 0.104 0.177 0.135 0.107 0.114 0.169 0.169 0.165 0.128 0.007 0.026 0.109 0.110 0.138 0.123
min-var(δ=0.85,η=10) 0.113 0.180 0.194 0.254 0.092 0.189 0.189 0.278 0.176 0.247 0.004 0.040 0.092 0.179 0.139 0.230

Data set: 100Ind
min-var(δ=1,η=1) 0.149 0.006 0.187 0.015 0.135 0.005 0.126 0.004 0.183 0.002 0.060 0.001 0.112 0.003 0.047 0.004
min-var(δ=1,η=2) 0.155 0.015 0.244 0.035 0.128 0.011 0.110 0.005 0.234 0.004 0.025 0.001 0.088 0.007 0.016 0.003
min-var(δ=1,η=4) 0.139 0.032 0.340 0.080 0.094 0.020 0.068 0.003 0.310 0.022 0.004 0.001 0.044 0.008 0.001 0.001
min-var(δ=1,η=10) 0.064 0.037 0.490 0.185 0.023 0.013 0.009 0.002 0.410 0.133 0.000 0.000 0.004 0.002 0.000 0.000
min-var(δ=0.95,η=1) 0.170 0.030 0.131 0.023 0.143 0.025 0.114 0.025 0.173 0.041 0.055 0.019 0.124 0.023 0.089 0.035
min-var(δ=0.95,η=2) 0.209 0.071 0.125 0.044 0.149 0.052 0.096 0.042 0.219 0.095 0.024 0.017 0.112 0.042 0.065 0.059
min-var(δ=0.95,η=4) 0.271 0.159 0.099 0.076 0.139 0.093 0.065 0.061 0.297 0.205 0.005 0.008 0.082 0.067 0.041 0.087
min-var(δ=0.95,η=10) 0.369 0.325 0.056 0.131 0.090 0.128 0.030 0.076 0.394 0.367 0.000 0.000 0.038 0.090 0.023 0.101
min-var(δ=0.85,η=1) 0.165 0.047 0.129 0.035 0.143 0.044 0.115 0.040 0.175 0.062 0.058 0.029 0.124 0.043 0.092 0.049
min-var(δ=0.85,η=2) 0.196 0.104 0.119 0.066 0.148 0.089 0.100 0.073 0.221 0.137 0.029 0.031 0.114 0.082 0.072 0.084
min-var(δ=0.85,η=4) 0.233 0.207 0.095 0.110 0.147 0.156 0.079 0.123 0.284 0.258 0.010 0.028 0.095 0.134 0.056 0.126
min-var(δ=0.85,η=10) 0.262 0.340 0.070 0.175 0.136 0.239 0.066 0.187 0.342 0.391 0.003 0.031 0.072 0.190 0.049 0.172

Data set: 45Euro
min-var(δ=1,η=1) 0.132 0.002 0.139 0.002 0.125 0.002 0.108 0.002 0.163 0.002 0.067 0.004 0.125 0.001 0.142 0.001
min-var(δ=1,η=2) 0.133 0.004 0.147 0.004 0.119 0.003 0.089 0.002 0.204 0.004 0.034 0.005 0.120 0.002 0.154 0.001
min-var(δ=1,η=4) 0.125 0.007 0.153 0.007 0.099 0.005 0.056 0.003 0.292 0.013 0.008 0.002 0.101 0.003 0.166 0.003
min-var(δ=1,η=10) 0.071 0.012 0.116 0.018 0.040 0.007 0.009 0.001 0.582 0.038 0.000 0.000 0.041 0.002 0.141 0.007
min-var(δ=0.95,η=1) 0.148 0.021 0.149 0.021 0.139 0.019 0.111 0.029 0.149 0.025 0.047 0.019 0.118 0.022 0.139 0.015
min-var(δ=0.95,η=2) 0.162 0.043 0.164 0.042 0.143 0.039 0.096 0.048 0.167 0.054 0.019 0.017 0.106 0.039 0.143 0.030
min-var(δ=0.95,η=4) 0.179 0.091 0.182 0.084 0.143 0.076 0.076 0.069 0.194 0.120 0.005 0.010 0.082 0.063 0.139 0.058
min-var(δ=0.95,η=10) 0.202 0.205 0.212 0.194 0.134 0.163 0.053 0.102 0.244 0.263 0.000 0.001 0.044 0.091 0.111 0.118
min-var(δ=0.85,η=1) 0.145 0.032 0.147 0.032 0.137 0.030 0.113 0.040 0.151 0.041 0.050 0.029 0.120 0.038 0.138 0.029
min-var(δ=0.85,η=2) 0.155 0.066 0.159 0.064 0.139 0.061 0.101 0.068 0.170 0.087 0.024 0.030 0.112 0.072 0.140 0.058
min-var(δ=0.85,η=4) 0.163 0.127 0.170 0.121 0.136 0.115 0.090 0.111 0.197 0.169 0.010 0.028 0.100 0.122 0.134 0.109
min-var(δ=0.85,η=10) 0.166 0.232 0.176 0.228 0.131 0.213 0.083 0.188 0.233 0.300 0.004 0.023 0.085 0.189 0.122 0.201

Data set: 17STI
min-var(δ=1,η=1) 0.134 0.000 0.135 0.000 0.128 0.001 0.132 0.000 0.150 0.001 0.048 0.000 0.134 0.001 0.140 0.000
min-var(δ=1,η=2) 0.136 0.001 0.138 0.001 0.124 0.002 0.131 0.001 0.170 0.001 0.017 0.000 0.136 0.002 0.148 0.000
min-var(δ=1,η=4) 0.132 0.002 0.137 0.002 0.109 0.003 0.123 0.001 0.206 0.003 0.002 0.000 0.133 0.003 0.156 0.001
min-var(δ=1,η=10) 0.110 0.004 0.119 0.004 0.068 0.005 0.092 0.003 0.332 0.009 0.000 0.000 0.112 0.005 0.167 0.002
min-var(δ=0.95,η=1) 0.135 0.015 0.134 0.016 0.138 0.013 0.132 0.022 0.141 0.015 0.057 0.021 0.125 0.020 0.138 0.012
min-var(δ=0.95,η=2) 0.138 0.029 0.137 0.030 0.144 0.027 0.135 0.043 0.151 0.032 0.028 0.024 0.121 0.039 0.145 0.026
min-var(δ=0.95,η=4) 0.138 0.053 0.137 0.055 0.149 0.055 0.137 0.081 0.166 0.067 0.010 0.020 0.112 0.071 0.150 0.059
min-var(δ=0.95,η=10) 0.130 0.101 0.129 0.105 0.149 0.129 0.146 0.170 0.200 0.168 0.003 0.018 0.099 0.137 0.146 0.141
min-var(δ=0.85,η=1) 0.134 0.025 0.134 0.026 0.137 0.022 0.131 0.031 0.140 0.026 0.061 0.031 0.126 0.037 0.138 0.023
min-var(δ=0.85,η=2) 0.136 0.048 0.136 0.049 0.142 0.046 0.132 0.060 0.149 0.054 0.036 0.038 0.126 0.074 0.143 0.048
min-var(δ=0.85,η=4) 0.134 0.084 0.134 0.087 0.144 0.094 0.133 0.111 0.160 0.109 0.019 0.047 0.129 0.140 0.147 0.098
min-var(δ=0.85,η=10) 0.123 0.138 0.127 0.147 0.147 0.200 0.135 0.208 0.175 0.229 0.012 0.075 0.140 0.251 0.141 0.188
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Silvennoinen, A., and Teräsvirta, T. 2009. Multivariate GARCH models. In: Andersen, T.G., Davis,
R.A., Kreiss, J.-P., and Mikosch, T. (eds), Handbook of Financial Time Series. Springer Verlag.

25
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