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Abstract

Traders worldwide use interest rate options and futures to bet on fu-
ture monetary decisions, in particular in countries where the monetary
regime is Inflation Targeting (IT). Under an IT regime Central Banks
tend to define the target rate on scheduled meetings. We propose in
this paper a simple and consistent way to explicitly incorporate the po-
tential changes in the target rate during Central Bank’s meetings into
interest rate futures and option pricing. We calibrate the model to
data from Brazil where there is a liquid market for futures and options
on overnight interest rate.
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1 Introduction

According to BIS semiannual OTC derivatives statistics report released on
June 2012 the interest rate derivatives market represents 77% of all no-
tional amounts outstanding worldwide, BIS (2012). Many participants in
this market are hedging their positions that have an interest rate risk with
an offsetting derivative contract. On the other hand, another group of par-
ticipants will use interest rate derivatives to take risk. For instance, interest
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rate options products provide market participants the right payoff to bet on
Central bank futures decisions about the target rate, namely in countries
under a Inflation Targeting (IT) regime. For instance, if a binary options
is available, investors can make bets on futures values of the overnight rate
at time t by buying/selling binary options expiring in the following business
day after a scheduled meeting u.

Recently, in response to the ongoing Libor scandal, which has revealed
that this important global benchmark of interest rates was manipulated by
parties tasked with setting the rate, we observe a significant part of the inter-
est rate market migrating their interest rate exposures to overnight interest
rate derivatives, in particular overnight indexed swaps, OIS. An overnight
indexed swap (OIS) is an interest rate swap where the floating rate of the
swap is equal to the geometric average of an overnight index rate over every
day of the payment period. The index rate is typically a central bank rate
or equivalent, for example the Federal funds rate in the US.

The empirical literature about the predictability of monetary changes
using derivatives is vast. Ederington and Lee (1996) analyze the response
of options on Treasury, Eurodollar, and foreign exchange futures to a num-
ber of different macroeconomic announcements using an approach similar
to Patell and Wolfson (1979, 1981). They find that implied volatility in-
creases on days without announcements and decreases after a wide range
of macroeconomic announcements. Beber and Brandt (2004) find that the
risk-neutral skewness and kurtosis embedded in Treasury bond futures op-
tions change around scheduled macroeconomic announcements, in addition
to documenting that implied volatility decreases after the announcements.
There are also a number of papers that analyze the impact of scheduled
announcements on equity options. Dubinsky and Johannes (2004) extract
estimates of the uncertainty embedded in earnings announcements using
option prices. They reduce the pricing errors by developing a no-arbitrage
option pricing model incorporating deterministic timed jump occurring at
the earnings release.

Our paper is closely related, at least on an intuitive level, to Piazzesi
(2005) where the author describes the Feds target as a pure jump process
and jump intensities depend on the state of the economy and the meeting
calendar of the Federal Open Market Committee (FOMC).

On the theoretical side, the goal of this paper is to develop a tractable
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reduced form model incorporating jumps on Central Bank meetings to price
derivatives on overnight interest rate. The key element in our model, unlike
traditional interest rate models, is the fact that we disentangle the overnight
rate into two components, the first is a continuous processes governing the
overnight rate between two scheduled meeting and a second one formed by
a deterministically timed jump describing Central Bank meetings outcome.

The rest of this paper is organized as follows. Section 2 presents the pa-
per motivation’s, Section 3 describes how to model forthcoming monetary
decisions using a discrete time Markov Chain. Section 4 presents closed for-
mula solutions for pricing interest rate futures and options incorporating the
market expectations about future changes in the monetary policy. Section 5
describes the model’s calibration to Brazilian data and Section 6 concludes.

2 Motivation

In the USA and many other jurisdictions meeting days for the Monetary
Authority, FOMC meeting for instance, are marked as special events on the
calendars of many market participants because changes in the target rate
tend to impact investments’ profits. Central Bank meetings are considered
special days to market participants worldwide, in countries like Brazil, Aus-
tralia and England, which have adopted inflation target (IT) regime to con-
duct the monetary policy, market participants track closely these scheduled
events. To properly incorporate the this feature we start by assuming an
arbitrary process to describe the dynamic of overnight (spot) interest rate,
(Rt)t≥0. It is a well know result that under no-arbitrage the zero coupon
bond (ZCB) price at time t and expiration at T is given by, P (t, T ):

P (t, T ) = E(e−
∫ T
t Rsds|Gt) (1)

Under a standard continuous affine framework, zero coupon bond prices
can be obtained using the conditional Characteristic function (ChF), as
Duffie et al. (2003). On the other hand, if there is a scheduled Central
Bank meeting before the bond maturity, interest rate must reflect this, oth-
erwise the bond will be mispriced. A feasible way to incorporate Central
Bank’s decisions regarding the target rate is by assuming that the resulting
overnight rate is a semimartigale where the discontinuous component cap-
tures monetary decisions. However, semimartigale assume jump occurrence
are doubly stochastic, in a sense that both dimension for the point pro-
cess, i.e. the jump time and the jump magnitude, are stochastic. However,
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randomly timed jump is an assumption not consistent for modeling interest
rate products in a presence of scheduled meeting by the Monetary authority.

Before formally construct our model we offer some insights by assum-
ing that one knows exactly the jump size on a scheduled meeting (t= u),
therefore we can rewrite equation (1) as :

P (t, T ) = E(e−
∫ T
t rsds|Gt)e−θ(T−u) (2)

where θ is the monetary decision on time u.

Additionally, if one believe that the overnight interest rate is kept fixed
between two consecutive scheduled meetings we obtain:

P (t, T ) = e−r(T−t)e−θ(T−u) (3)

Even though equation (3) relies on an unrealistic assumption of no un-
certainty on the economy its multiplicative form will be also found when
interest rate and monetary decisions are stochastic.

Generically, we can set that the overnight interest rate dynamics is given
by:

drt = µ(rt)dt+ σ(rt)dWt, t > 0. (4)

Where µ(·) is the drift and σ( · ) is the diffusion coefficient.

To incorporate scheduled events we assume that interest rate processes
have a deterministically timed jump occurring at Central Bank meetings.
Thus we assume that θu describes a stochastic process which reflects changes
in the target rate defined by the Central Bank and released at day u, where
t ≤ u ≤ T . In practice we observe that θt tend to assume values multiples
of some known quantity, for instance 25 basis-point (i.e. 0.25%).

So we set that the observable interest rate process, Rt, can be decom-
posed into:

Rt = rt− + θt (5)

where rt− = lims↑t rt describes the overnight interest rate immediately
before time t and θt the outcome from Central Bank. Therefore between
two scheduled meetings, the overnight rate evolves as a diffusion process and
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jumps by a random size θ at scheduled meeting.

At first sight, the expression (5) might seem too restrictive, however it
is important to keep in mind that overnight interest rate are determined by
interbank transactions and there is no reason to believe that, without any
deterioration in commercial banks’ credit quality, the new target rate will
change the dynamics of the borrow/lending rate among banks with same
creditworthiness. So, once the Central bank release the value θu at u, the
overnight rate jumps to the new level and afterward fluctuate in a diffuse
way.

To empirically support our model, the figure below exhibits the recent
evolution of the overnight interest rate in Brazil, which, as mentioned before,
has an Inflation Target regime since 1999 and all1 changes on target rate
are defined on scheduled meeting.
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Figure 1: Overnight interest rate evolution in Brazil

For the selected scheduled meeting of the Brazilian Central Bank, we
can observe the pronounced effect of jumps on overnight rate. This findings
supports our assumption that the observable interest rate can be decom-
posed into two components, a continuous process describing the overnight
rate between meetings and a point process which captures the monetary

1Technically speaking the Central Bank can call an extraordinary meeting anytime.
However since 1999, the central bank modified the target rate in an extraordinary meeting
just once in a total of 117 regular meetings.
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decisions.

Based on our assumptions, we investigate first the conditional charac-
teristic function (ChF) of spot rate Rt:

φ(u,Rt, t, T ) =E
(
e−

∫ T
t Rsds+iuRT |Gt

)
(6)

=E
(
e−

∫ T
t θsds+iuψT · e−

∫ T
t rsds+iurT |Gt

)
(7)

Additionally, if processes θt and rt are independent we can obtain:

φ(u,Rt, t, T ) = φ(u, θt, t, T ) · φ(u, rt, t, T ) (8)

According to Duffie et ali.(2000) the discounted ChF, φ(u, rt, τ) := φ(u, rt, t, T )
for an affine interest rate model for u ∈ C is:

φ(u, rt, τ) = eA(u,τ)+B(u,τ)rt (9)

with τ = T − t and initial condition A(u, 0) = 0 and B(u, 0) = iu.

If one knows the evolution of (θt)t≥0 it becomes a deterministic time
dependent function and a zero-coupon bond at time t expiring at T, P (t, T ),
can be written as a product of a deterministic factor and the bond price in
an ordinary affine model with u = 0 in equation (6):

P (t, T ) = exp

(
−
∫ T

t
θsds+A(0, τ) +B(0, τ)rt

)
(10)

The component
∫ T
t θsds captures all possible scheduled meeting out-

comes over the interval [t, T ]. We also observe that we meet the boundary
condition P (T, T ) = 1. Even though equation (10) relies on an unrealistic
assumption of no uncertainty on monetary outcomes its form will be also
found when interest rate and monetary decisions are stochastic.

A key element for describing the monetary policy, in particular for coun-
tries under IT-regime, is that values of (θt)t≥0 are not independent through
the time but its values tend to reflect the current monetary policy pursued
by the Central Bank. Under this hypothesis the Central bank tend to in-
crease or decrease the target rate by multiples of 25 Bps, or even keep it
unchanged, so θ = 0. Figure 2 exhibits the time dependence on Monetary
decisions between two consecutive meeting for the Brazilian Central Bank.
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Figure 2: Persistence on Monetary decision in Brazil - Sample from 2000 to
2012

Figure 2 depicts the dispersion diagram between two consecutive meet-
ing. Although we present the linear fit for the data, the better measure to
describe persistence in this context is the Kendall’s tau which expresses the
similarity of the orderings of the data when ranked by each of the quantities.
The Kendall’s tau between two consecutive meeting in our sample is close to
0.5 which represents an indicative that these processes exhibits some level
of persistence. The dependence found suggests that we should model the
evolution of the Monetary decisions by Central Banks, (θt)t≥0. A feasible
way to incorporate simultaneously uncertainty and dependence on central
bank decisions is by employing a Discrete Time Markov Chain (DTMC) of
order k for modeling (θt)t≥0.

A second potential factor impacting (θt)t≥0 could be the current overnight
interest rate (rt)t≥0. Recurring again to Brazilian data, we exhibit the rela-
tion between the central bank decision on times u and the current overnight
interest rate:
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Figure 3: Target and Overnight interest rate evolution - Sample from 2000
to 2012

Differently from figure 2 we do not find, either visual or using Kendall’s
tau, any evidence that monetary decision depends on the current overnight
rate. However from this analysis, we do have some elements to state that the
process (θt)t≥0 itself depends on the monetary cycle pursued by the Central
Bank and therefore is not temporally independent. In another words, in
a loose (tight) monetary cycle the probability of observing two reductions
(increases) in a row is higher that two consecutive decision with opposite
signs.

Additionally, at time t, θu is not adapted to Gt so market participants
need to estimate θu to price an interest rate linked instrument. In next
sections, we impose some structure on (θt)t≥0 and its usage to price overnight
interest rate instruments in a closed-form.

3 Modeling (θt)t≥0 as a DTMC

For sake of simplicity we assume that (θt)t≥0 is an ergodic Markov Chain of
order one. A Markov chain is called ergodic if there exists t such that for
all x, y ∈ Ω , Pt(x, y) > 0. For finite Markov chains the following pair of
conditions are equivalent to ergodicity:
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1. Irreducible: For all x, y ∈ Ω, there exists t = t(x, y) such that
Pt(x, y) > 0;

2. Aperiodic: For all x ∈ Ω, gcd{t : Pt(x, x) > 0} = 1.

These assumption are not too restrictive because: first, one can always
write a k order DTMC as a first order DTMC, second periodicity is not a
rational behavior under a IT-regime and third the set A given by all poten-
tial values of Central Bank’s decision about (θt)t≥0 is finite.

Usually θt tend to assume values multiples of some known quantity, for
instance 25 Basis-point (Bps). Therefore we define A as the set of possible
outcomes in one Central Bank meeting. Typical elements of A are i =
k × 0.0025 such that k ∈ Z. Additionally, once θ is DTMC its marginal
distribution P(θu = i) over A at time u is described by2:

P(θu = i) =
∑
j

P(θu = i|θs = j)P(θs = j) (11)

Where transition probabilities P(θu = i|θt = j) satisfy the Chapman
Kolmogorov equation for two consecutive Central Bank meetings s < t < u.

A convenient simplification arise in equation (11) when there exist just
one scheduled meeting before the bond maturity. In this case, θs ∈ Gt and
equation (11) simplifies to:

P(θu = i) = P(θu = i|θs = j) (12)

Because P(θs = j) assume just two outcomes {0, 1}. We have P(θs =
j) = 1 if θs = j was the decision taken by Central bank at meeting s and
zero otherwise. Such simplification is important to calibrate the transition
probabilities from market prices.

2A technical question could arises when dealing with DTMC evolution. Equation (??)
describes the probability for the process be at state θu = 1 after n steps, for our purpose
we might need the probability that the process hit by the first time the state θu = 1
. Even though conceptually different this distinction is not relevant when dealing with
DTMC that walks few steps as in our case.
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4 Pricing interest rate instruments

Due to their importance to the interest rate market we present in this sec-
tion closed form solution for zero coupon-bonds and overnight interest rate
options. To reach our goal we set the continuous overnight rate (rt)t≥0 as
follows:

drt = κ(Θ− rt)dt+ σdWt (13)

Equation (13) is the standard mean reversion Gaussian interest rate
model developed initially by Vasicek (1978). According to our model’s as-
sumptions, the observable overnight interest rate is the result of two compo-
nents, the first one is a continuous overnight rate rt process which describes
the overnight rate evolution between two central bank meeting and the sec-
ond one captures monetary decisions, θt:

Rt = rt− + θt (14)

Where the evolution of (rt)t≥0 is given by (13) while (θt)t≥0 evolve as a
Discrete Time Markov Chain as defined at section 3.

An intermediate result relevant for pricing overnight interest rate prod-
ucts is the next lemma:

Lemma 1 If drt is a Vasicek process then:

−
∫ T

t
rsds ∼ Normal(M(t, T ), V (t, T ) (15)

where:

M(t, T ) =
rt −Θ

κ

(
1− e−κτ

)
− κτ (16)

V (t, T ) =
σ2

2κ3

(
2κτ − 3 + 4e−κτ − e−2κτ

)
(17)

We do not prove this lemma because its proof is well known3.

3However the interested reader can consult Mamon (2004) for instance.
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4.1 Zero-coupon bond pricing

According to our assumptions, the price at time t of a zero-coupon bond
maturing at time T is:

P (t, T ) = E(e−
∫ T
t Rsds|Gt) (18)

= E(e−(
∫ T
t rsds+

∫ T
t θsds)|Gt) (19)

Where t < u < T and u is the scheduled meeting.

To calculate the zero-coupon price above we need to solve the expectation
over two stochastic process (rt)t≥0 and (θt)t≥0. In section 2 we assumed
that the evolution of (θt)t≥0 were known in advance and the ZCB price was
obtained as:

P (t, T ) = exp

(
−
∫ T

t
θsds+A(0, τ) +B(0, τ)rt

)
(20)

However, in practice this quantity is random and the expectation in
(18) is calculated over the joint density of (rT , θT ) which might be quite
complicate because θT is a DTMC and therefore the joint density will be a
mixture of continuous and discrete variables. So we state:

Proposition 1 The no-arbitrage price of a zero-coupon bond is given by:

P (t, T ) =
∑
i

exp

(
−
∫ T

t
θsds+A(0, τ) +B(0, τ)rt

)
P(θT = i) (21)

where A(0, τ) and B(0, τ) are standard Vasicek coefficients given by:

B(0, τ) = −1− e−κτ

κ
(22)

A(0, τ) =

(
Θ− σ2

2κ2

)
[B(0, τ)− τ ]− σ2B(0, τ)2

4κ
(23)

and P(θT,i) are calculated by (11).

Proof of Proposition 1. We start our proof by rewriting equation (19)
as:
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P (t, T ) =

∫
A×Ω

[(e−(
∫ T
t rsds+

∫ T
t θsds)]dF (ri, θ) (24)∫

A

[∫
Ω

[e−(
∫ T
t rsds+

∫ T
t θsds)]dF (ri|θ)

]
dG(θ) (25)

where for a fixed
∫ T
t θsds we can write:

P (t, T ) =

∫
A

[
e
∫ T
t θsds

∫
Ω

[e−(
∫ T
t rsds)]dF (ri|θ)

]
dG(θ) (26)

where the inner integral is calculated using the conditional Characteristic
function (ChF) φ(0, rt, τ) which for the Vasicek model provides closed form
solution to A(0, τ), B(0, τ) as described above. So for a given θT we can
solve (19) as a classical ZCB pricing in a Vasicek model with a deterministic
time-dependent drift. Finally, the ZCB price is obtained by calculating the
outer integral, which consists in repeating the first step over all possible
values of θT weighted by its probability.

�

4.2 Options Pricing

Binary options provide market participants the right payoff to bet on Cen-
tral bank futures decisions about the target rate. Binary options pays out
one unit of cash if the overnight interest rate Rt is equal or above the strike
at maturity. Binary options are generally considered “exotic” instruments
and there is no liquid market for trading these instruments between their is-
suance and expiration. The lack of liquidity to unwind a position before the
maturity make binary options less appealing in practice, because sometimes
traders may need readjust their position after a new economic indicator,
which may impact Central Bank decision on (θt)t≥0, is released.

Exchanged-traded interest rate options tend to be plain vanilla, for in-
stance CME Group has both futures and options on 30-Day Fed Funds. The
contracts are designed to speculate/hedge on changes in short-term interest
rates brought about by changes in Federal Reserve monetary policy. As
observed earlier, part of the USA interest market has switched to overnight
interest rate derivatives, such as overnight indexed swaps, OIS. An overnight
indexed swap (OIS) is an interest rate swap where the periodic floating rate
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of the swap is equal to the geometric average of an overnight index rate
over every day of the payment period. Besides swaps other derivatives can
have overnight rates as underlying, options for instance. In fact, we can
point out IDI options traded at Brazilian Securities and Futures Exchange,
BM&FBOVEPSA, as an example of overnight indexed option.

The underlying asset for IDI options is the IDI index defined as the
accumulated overnight interest rate (Rt)t≥0. Therefore, if we associate the
continuously-compounded overnight interest rate to (Rt)t≥0, then IDI is
given by:

IDIT = IDIte
∫ T
t Rsds (27)

An IDI option with maturity T is an European option whose payoff
depends on the integral of the overnight rate through time t and option
expiration date T .

Denote by Call(T,K,Rt) the time t price of a call option on the IDI,
with maturity T and strike price K. Then:

Call(T,K,Rt) = E
[
e−

∫ T
t Rsds(IDIT −K)+|Ft

]
(28)

Expression (28) can be simplified after plugging (27) and (5):

Call(T,K,Rt) = E
[
e−

∫ T
t Rsds(IDIT −K)+|Ft

]
(29)

= E
[
e−

∫ T
t (rsds+θsds)

(
IDIte

∫ T
t (rsds+θsds) −K

)+
|Ft
]

(30)

= E
[(
IDIt − e−y(t,T )Ke−

∫ T
t θsds

)+
|Ft
]

(31)

where: y(t, T ) :=
∫ T
t rsds.

In general, the presence of jumps generate an incomplete market, due
to the inability to hedge the continuously distributed jumps. In a way, to
perfectly hedge jumps, one requires as many hedging instruments as the
cardinality of the jump size distribution. With normally distributed jumps,
this requires an uncountably infinite number of hedging instruments. On
the other hand in our framework the card(A) is by construction finite. This
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feature circumscribes our analysis to the standard complete market frame-
work where there is an unique martingale measure Q equivalent to P.

Theoretical results and cross-section pricing of interest rate Asian op-
tions can be found among others in Geman and Yor (1993) and Chacko
and Das (2002). In particular, pricing IDI options were recently studied by
Almeida and Vicente (2012) by specifying the overnight rate, rt as a sum of
N processes with Θ = 0 for all N in (13).

When considered the presence of scheduled meetings the pricing of an
IDI option can be obtained as:

Proposition 2 The no-arbitrage price for an European IDI call option is
given by:

Call(T,K,Rt) = E
[(
IDIt − e−y(t,T )Ke

∫ T
t (θsds)

)+
|Ft
]

(32)

=
∑
i

BScall((rT |θT = i), K̂i, T, V (t, T ))P(θT = i) (33)

where:

BScall((rT |θT = i),K, T, V (t, T )) = IDItN(d1)− K̂iP (t, T )N(d2) (34)

with:
K̂ := Ke−

∫ T
t θsds ∈ R+is the corrected strike price. (35)

d1 =
log IDIt

KP (t,T ) + V (t,T )
2√

V (t, T )
(36)

d2 = d1 −
√
V (t, T ) (37)

and V (t, T ) as in (16).

with τ = (T − t), θT :=
∫ T
t θsds ∈ R+ and P(θT = i) as (11).

Proof of Proposition 2. Starting with equation (29) we can make
explicit the expectations:
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Call(T,K, rt) =

∫
A×Ω

[(
IDIt − e−y(t,T )Ke−

∫ T
t θsds

)+
]

dF (rT , θT ) (38)∫
A

[∫
Ω

[(
IDIt − e−y(t,T )Ke−

∫ T
t θsds

)+
]

dF (rT |θT )

]
dG(θT )

(39)∫
A

[∫
Ω

[(
IDIt − e−y(t,T )K̂

)+
]

dF (rT |θT )

]
dG(θT ) (40)

Conditioning F (rT , θT ) on θT the inner integral with the new strike price
K̂ can be solved as in Almeida and Vicente (2012) but with V (t, T ) and
M(t, T ) adjusted as given in (16) to work with Θ 6= 0. In this step we are
solving the same problem as in Alemida and Vicente (2012) but here with
modified strike prices K̂ which depends explicitly on θT . Once solved the
earlier step for a given θT = i we repeat step one for every possible θT and
weighting by its probabilities, P(θT = i), calculated as equation (11).

�

If Put(T,K,Rt) is the price at time t of the IDI put with strike K and
maturity T , then by the put-call parity we state without proof:

Proposition 3 The no-arbitrage price for an European IDI put option is
given by:

Put(T,K,Rt) =
∑
i

BSput((rT |θT = i),K, T, V (t, T ))P(θT = i)

where:

BSput((rT |θT = i),K, T, V (t, T )) = KP (t, T )N(−d2)− IDItN(−d1) (42)

with:

K̂ := Ke−
∫ T
t θsds ∈ R+is the corrected strike price. (43)

d1 =
log IDIt

KP (t,T ) + V (t,T )
2√

V (t, T )
(44)

d2 = d1 −
√
V (t, T ) (45)
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and V (t, T ) as in (16).

with τ = (T − t), θT :=
∫ T
t θsds ∈ R+ and P(θT = i) as (11).

This strategy of conditioning on all possible values of θT is conceptually
equivalent to Merton (1976) to price option when jumps are presents.

Even though Propositions 2 and 3 were derived for IDI options traded in
Brazil these results are valid for any other instruments where the underlying
is an overnight rate.

5 Model Calibration

5.1 Simulated monetary decision data

In this section we calibrate the transition matrix using real market prices.
But before calibrating the model to real data we performed a Monte Carlo
simulation to assess its quality to extract market beliefs about Central Bank
decision. We assume different values for the elements of A for 2 consecutive
meetings. The overnight interest rates is described by equation (13). For
every set A we combine all elements to describe futures decision of Central
Bank. For instance, if A = {−25bps, 0,+25bps} we have a vector of dimen-
sion 9× 2 corresponding to all 2-combinations from elements of set A. For
every possible combination of monetary decision we use equation (10) and
(21) to simulate bond prices at time t and later we solve the optimization
problem:

argmin (B̂t − B̌t)2 s.t :


∑
j

P(θu = i|θs = j) = 1

P(θu = i|θs = j) ≥ 0, ∀j
(46)

where B̂t is obtained by plugging the values of A into ( 10) with different
values for initial overnight rate rt. B̌t is the predicted bond price using
(21). The first constraint assures that the sum of each line in the transition
matrix is equal to 1 and the second constraint assures non-negative values
for probabilities. The output from the optimization problem is a vector of
dimension 9×2 corresponding to all 2-combinations from elements of set A.
Results from the simulation exercise are in tables 1 and 2:
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1stMeeting 2ndMeeting

A = {−25bps, 0,+25bps} 100% 100%

A = {−25bps, 0,+50bps} 100% 100%

A = {−50bps, 0,+25bps} 100% 99%

Table 1: Calibration exercise for simulated monetary decision. Initial
overnight interest rate, rt = 10%

A similar result is obtained when the overnight interest rate is rt = 5%:

1stMeeting 2ndMeeting

A = {−25bps, 0,+25bps} 100% 100%

A = {−25bps, 0,+50bps} 100% 100%

A = {−50bps, 0,+25bps} 100% 100%

Table 2: Calibration exercise for simulated monetary decision. Initial
overnight interest rate, rt = 5%

We assume that the bond maturity is 4 months and Central Bank Meet-
ings are scheduled every month. Tables 1 and 2 might be read as follows:
cell (2, 2) is the percentage of times that the calibration algorithm predicted
the right outcome for the first meeting. Cell (2, 3) express the percentage
of times that the calibration algorithm predicted the outcomes for the first
and second meeting. For the first meeting, probabilities are calculated using
equation (12) while for the remaining meeting the probabilities are calcu-
lated using equation (11).

Another way to visualize the information above is graphically as depicted
below:
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Figure 4: Calibration exercise for simulated monetary decision. Initial
overnight interest rate, rt = 10%

Assuming that A = {−25bps, 0,+25bps} we plotted all combination of
two elements of A representing two possible meetings outcomes, therefore
a total of 9 elements. We can read the graph by choosing one element on
axes X, for instance, the point 1 at X axes represents two consecutive in-
terest rate reduction, while point 5 is the opposite, two consecutive increases.

We can see that using simulated data the calibration algorithm predicts
with high precision outcomes for Central Bank Meetings implied into bond
prices. Now we turn to calibrate the model with real market prices.

5.2 Real market prices

We choose to calibrate the model to Brazilian data for two reasons. First,
there is a very liquid market for overnight interest rate in Brazil, both for fu-
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tures and options. Second, Brazil has adopted a Inflation Targeting regime
since 1999 with scheduled meeting to define the target rate and interest rate
derivatives are used by market participants to bet on future monetary deci-
sions4. The overnight interest rate futures5 traded at BM&FBOVESPA is
one of the most liquid short-term interest rate contracts in emerging markets,
and the average volume of 1.3 million contracts traded daily is significant
even for developed markets. The notional value of the contract is 100,000
BRL (approximately 50,000 USD as of 4/11/2012). DI futures are quoted
in terms of rates and are traded in basis-point, but positions are recorded
and tracked by the present value of contract, called PU. For a given day t
the present value is obtained by discounting the notional value of the con-
tract by the expected overnight interest rate from t up to the day prior to
expiration, T . Therefore, at time t we can calculate the present value6 (PU)
of a DI-futures with expiration date of T as:

PUt = E(e−
∫ T
t rsds|Gt)× 100, 000 (47)

From equation (47) we verify that the DI futures is very similar to a
zero-coupon bond, except that it pays margin adjustments every day. The
fact that the contract resembles a zero-coupon bond allows us to use the
results derived at earlier sections to extract the implied market transition
for (θt)t≥0 and use them for pricing options. We will calibrate our models
as we were in January/2012. We assume that A = {−50bps, 0,+25bps}
and we calibrate the model for every day in January to extract the market
probabilities of the two next COPOM decisions. The first two COPOM
meeting in 2012 were scheduled for January 18 and March 7. Tables below
exhibit the transitions matrix implied into DI futures. We do not report all
transition matrix due to lack of space, but we do report for 2 days:

Tables 3 and 4 might be read as follows: θ = U means increase in interest
rate; θ = D means decrease in interest rate; θ = N means maintenance in
interest rate; From tables above we can observe that the transition matrix
are quite homogeneous.

4The Brazilian Central Bank meeting are called COPOM - Monetary Policy Commit-
tee, in Portuguese - and it is conceptually equivalent to FED FOMC meetings. To avoid
any potential criticisms about insider information the COPOM releases its decision when
the Brazilian market is closed.

5Ticker: DI1
6In practice, the Brazilian convention for interest rate is exponential compound 252

business day (BD) and margin adjustment are calculated by formula: PUt = 100, 000/(1+
rt)

BD/252.
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θ = U θ = D θ = N

θ = U 0.73 0.13 0.14

θ = D 0.00 0.87 0.13

θ = N 0.33 0.33 0.34

Table 3: Implied transition matrix -
1/2/2012

θ = U θ = D θ = N

θ = U 0.74 0.14 0.12

θ = D 0.00 0.87 0.13

θ = N 0.33 0.33 0.34

Table 4: Implied transition matrix -
1/10/2012

If the purpose of extracting implied probabilities from DI futures is for
pricing IDI options we need first determine the marginals probabilities, this
is performed using equations (11) and (12), and later use equation (32). The
marginal distribution for A = {−50bps, 0,+25bps} are exhibited in figures
5.2 and 5.2:
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Figure 5: Implied Probabilities for COPOM’s decision - Scheduled meeting
for 1/18/2012
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Figure 6: Implied Probabilities for COPOM’s decision - Scheduled meeting
for 3/7/2012

Ex-post we know that COPOM reduced the target rate by 50Bps and
75Bps in each meeting. Comparing the results obtained with the model we
can assert that market participants could predict the future COPOM deci-
sion with high precision. However, this paper is not about efficient ways to
predict COPOM’s decision per se. It is about how to incorporate market
opinions into interest rate derivatives in a consistent way, regardless whether
the market can predict future monetary decisions or not.

Regarding asset pricing, a first way to assess the quality of our method-
ology is by comparing its ability to price DI futures, which are seen as
zero-coupon bonds. We compare three models with market prices for a DI
futures expiring few days after a scheduled meeting on 02/01/12: pure Va-
sicek model, Vaiscek with deterministically timed jump - Vasicek TJ, and a
naive method using the overnight rate.

According to our methodology where we disentangle the overnight rate
evolution from monetary decisions, we need to use a period between two
consecutive COPOM meetings because within this interval the observable
overnight rate is best described by a continuous process (13).
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Since our exercise consists in pricing the DI futures as we were in Jan-
uary/2012 the last between meeting period is from 12/01/2011 to 01/18/2012.
To avoid any superposition between calibration and pricing, we calibrated
the parameters from (13) along December/2012 using DI futures prices with
expiration in 2/1/12 while the pricing step starts on 1/2/12.

After the last COPOM meeting on 11/30/2011, the market sentiment
was an additional reduction for the target rate on the next COPOM meet-
ing. In fact, the news on the media were an additional reduction of 50 bps.
Therefore putting together the market expectation and calibrated param-
eters in our model (i.e equation (21)), we are able to price the DI futures
and compare its results with a pure Vasicek model and a naive flat forward
rate (equation (3) with θ = 0). The results for each models are depicted at
figure 7 where we reported the implied rate from each model:

10.00%
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11.20%

Overnight Market Vasice TJ Vasicek

Figure 7: Pricing DI futures - Models performance along January/2012

From the figure above we observe that Vasicek model with deterministic
timed jump gives the best performance for pricing DI futures. We observe
that pure Vasicek model is very close to the overnight rate and far way from
the implied interest rate expected until the DI maturity. On the other hand
the Vasicek extended to incorporate deterministic timed jump is very close
to market values. The table below quantifies model’s performance by mean
of mean square errors (MSE):
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Overnight Vasicek TJ Vasicek

MSE 4.7E-06 4.46E-08 7.26E-06

Table 5: Mean Square Errors (MSE) for competing models

Table 5 summarized our findings and provides a metric to compare com-
peting models. The Vasicek with deterministic timed jump provides the
smallest EQM, in fact its value is 10 times smaller that any other compet-
ing model.

Finally we present the results of our methodology applied for pricing
IDI options. The parameters driving the continuous process are the same
used for pricing DI futures. Probabilities for possible monetary outcome are
obtained from IDI futures through the process described in (46). Market
Prices for IDI put options are available at BM&FBOVESPA website. We
applied our model (equation 32) only for strikes which were traded along
each selected day in a 4 weeks horizon in January 2012. All options have
expiration date on 4/2/12 and within this period there are two scheduled
COPOM meeting.
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Figure 8: Pricing put IDI options - 4/1/12
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Figure 9: Pricing put IDI options - 9/1/12

Before exhibiting our results some care must be taken because we are
handling out-of-the money options with prices inferior to BRL 1 as well as
ATM options costing around BRL 550 at same graph. To avoid any scale
distortion we decided to plot log-prices. When our model is compared to
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Figure 10: Pricing put IDI options - 17/1/12
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Figure 11: Pricing put IDI options - 26/1/12

market prices we observe a very consistent pattern with those traded into
the market. In addition our model outperforms the Vasicek model for every
strike.

Finally, we observe that our methodology is flexible enough for mod-
eling equally well out-of-the money and in-the money options without any
assumption over the volatility. An important consequence of this framework
is the fact that by construction options and ZCB will embed the same prob-
abilities regarding the future monetary policy decisions.

A final remark on our framework concern its comparison to Piazzezi
(2005), which also model future monetary outcomes. While option pricing
in her framework are obtained using numerical methods to solve a time
dependent ODE we only incur in a couple of Black & Scholes-like valuations.

6 Conclusion

Many countries worldwide have adopted Inflation Targeting as a strict rule
for conducting their monetary policy. In his turn market participants have
tracked carefully all scheduled meeting where the target interest rate is set
and trading derivatives to bet on possible outcomes. Standard interest rate
models are not suitable for handling deterministic timed events and some
level of mispricing is presented when applied for pricing interest rate deriva-
tives. Based on that, we have developed in this paper a stochastic interest
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rate model able to endogenously incorporate monetary announcements. The
model incorporates future monetary decision and therefore allows pricing
both futures and options in a consistent way. We calibrate the model to
data from Brazil. Brazil came up with the right place to apply our model
because it has adopted an inflation targeting regime since 1999 and there is
a very liquid overnight interest rate derivatives market which are used by
market participants to bet on future monetary decisions. When compared
to market prices the model provided good performance and outperformed
the standard Vasicek model for pricing liquid put options. Although the
model was applied to Brazilian data it can be used in other jurisdictions
which announce their policy decisions at regularly scheduled meetings such
as England, Australia and even the US.
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