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Abstract

Costa, Luiz Guilherme Carpizo Fernandes; Hiller, Timo (Advisor).
Monetary Policy and Liquidity Management in a Model of
Endogenous Network Formation for the Interbank Market.
Rio de Janeiro, 2021. 62p. Dissertação de Mestrado – Departamento
de Economia, Pontifícia Universidade Católica do Rio de Janeiro.

This paper develops a tractable endogenous network formation model of
the interbank market. Due to liquidity shocks, banks face a trade-off between
investing their resources in a liquid asset and a high-yield illiquid asset. The
interbank market is modeled as a network. A link extended by one bank to
another is interpreted as a credit line from which the former bank can borrow
a share of the latter’s liquid assets to cover liquidity outflows. The central
bank, by means of its standing facilities, lends resources to banks that are
short in liquidity and borrows from institutions with liquidity surpluses at
predetermined rates. These rates establish a corridor in which the rate that
banks charge for interbank loans must lie. In this setting, we characterize
the unique equilibrium of banks’ liquidity holdings for any network. We then
endogenize the network, via banks’ decision of credit lines, and provide a
sharp equilibrium characterization: every equilibrium network is a complete
core-periphery graph. This characterization is consistent with empirically
observed networks. Moreover, we introduce a trade-off for central banks when
choosing the corridor rate: a narrower corridor implies more precise targeting
of the interbank rate, which is important for the conduct of monetary policy.
However, if we account for banks’ linking decisions, this may lead to an
equilibrium with a sparser network, where total liquidity holdings are higher,
incurring an implicit cost since these funds could be invested in the more
productive illiquid asset instead. More generally, our analysis highlights the
important role that endogenous networks play in the transmission of monetary
policy.

Keywords
Interbank market; Endogenous Networks; Corridor Rate; Liquidity.
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Resumo

Costa, Luiz Guilherme Carpizo Fernandes; Hiller, Timo. Política
Monetária e Gestão de Liquidez em um Modelo de For-
mação Endógena de Redes do Mercado Interbancário. Rio
de Janeiro, 2021. 62p. Dissertação de Mestrado – Departamento de
Economia, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação desenvolve um modelo tratável de formação endógena
de redes do mercado interbancário. Devido a choques de liquidez, bancos
enfrentam um trade-off entre investir seus recursos num ativo líquido e num
ativo ilíquido de alto retorno. O mercado interbancário é modelado como uma
rede. Um link estendido por um banco a outro é interpretado como uma linha
de crédito da qual o primeiro banco pode tomar emprestado ativos líquidos do
segundo para cobrir fluxos de saída de recursos. O Banco Central, através de
linhas financeiras, empresta recursos aos bancos com saldos negativos e toma
emprestado de instituições com saldos positivos a taxas por ele estabelecidas.
Essas taxas definem um corredor no qual a taxa cobrada em empréstimos
interbancários deve estar contida. Nesse contexto, caracterizamos o equilíbrio
(único) nas decisões de investimento dos bancos para qualquer rede. Em
seguida, endogenizamos a rede, através da decisão dos bancos de linhas de
crédito, e mostramos que toda rede em equilíbrio é uma rede de núcleo-periferia
completa. Esse resultado é consistente com redes empiricamente observadas.
Ademais, introduzimos um trade-off para Bancos Centrais ao decidir o corredor
de juros: um corredor mais estreito dá mais controle ao Banco Central sobre a
taxa interbancária, o que é importante para a condução de política monetária.
No entanto, se considerarmos as decisões de links dos bancos, isso pode levar a
um equilíbrio com uma rede mais esparsa, onde o investimento total no ativo
líquido é maior, o que representa um custo implícito, já que esses recursos
poderiam ser investidos no ativo mais produtivo. No geral, nossa análise
ressalta o importante papel que redes endógenas têm na transmissão de política
monetária.

Palavras-chave
Mercado Interbancário; Redes Endógenas; Corredor de Juros; Liquidez.
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1
Introduction

Recent work shows that banks’ liquidity management is one of the main
transmission channels of monetary policy (see, for example, a recent paper by
Bianchi and Bigio (2021)). When choosing to hold more liquidity, banks have
to forgo more productive investment opportunities. Monetary policy decisions,
in turn, affect the trade-off between investments in liquid and illiquid assets
and thus have an impact on the real economy. The existence of an interbank
market also affects banks’ portfolio decisions: by allowing banks to trade liquid
assets with each other, it reduces each bank’s marginal benefit of directly
holding liquid assets. Understanding how banks decide the composition of their
portfolios in the presence of an active interbank market is, therefore, important
for the conduct of monetary policy.

Bindseil (2016) highlights some aspects that have been the consensus for
operational frameworks among most central banks after 2007. First, central
banks set as an operational target a short-term interest rate that is under their
control. In most cases, this target is the overnight interbank rate. Another key
aspect is that central banks offer standing facilities to absorb liquidity from
and provide liquidity to commercial banks at predetermined rates. These rates
establish a corridor within which the interbank rate fluctuates. A narrower
corridor reduces the variance of the interbank rate, allowing the central bank
to target it with higher precision.1 An important question, then, is how narrow
should the central bank set the corridor rate. We argue that a central bank,
when optimally deciding the corridor width, faces a trade-off between precise
targeting of the interbank rate and commercial banks’ total allocation to liquid
assets, which is generally higher for a wider corridor. Holding liquidity bears
an implicit cost since these resources could be allocated to more productive
assets instead.2

1For a comprehensive analysis of how corridor systems are an effective way for the central
bank to control the interbank rate see Bindseil and Jabłecki (2011), Quiros and Mendizabal
(2006) and Whitesell (2006).

2Consistent with this trade-off is the evidence that banks in regions such as the U.S and
Europe have drastically decreased their interbank activity and increased their holding of
reserves after the Great Recession. (See Kim et al. (2020) for evidence in the U.S interbank
market). During this period the Federal Reserve Bank started paying interest on reserves,
thus effectively establishing a corridor rate, while the European Central Bank reduced the
width of its corridor rate from 200 basis points to 75 basis points as of September 2019.
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Chapter 1. Introduction 11

In this dissertation, we develop a simple and tractable endogenous net-
work formation model of the interbank market. Banks solve a liquidity man-
agement problem, making simultaneous decisions regarding liquidity holdings
and interbank credit lines, which are modeled as (directed) links. When de-
ciding optimally, banks take the corridor rate that is established by central
bank’s standing facilities into account. By letting banks review not only their
allocation to liquid assets but also their interbank credit lines, we show that
a narrower corridor reduces banks’ incentives to borrow in the interbank mar-
ket. This, in turn, can lead to excessive levels of liquidity holdings.3 We then
demonstrate that once accounting for the cost of holding (unproductive) liquid
assets, it is not optimal for the central bank to choose the corridor width that
minimizes the interbank rate variance. Note that this provides a new rationale
for a strictly positive spread between standing facilities rates, even when the
central bank’s main goal is to precisely target the short-term interbank rate.4

Next, we show that failing to account for how interbank credit lines are es-
tablished (and altered) when setting the corridor rate may lead to suboptimal
policy. Lastly, we study how the optimal corridor width changes with respect
to increases in the size of interbank transaction costs and liquidity outflows.
This analysis can be relevant for moments of financial distress, when such vari-
ables are likely to rise.5 To the best of our knowledge, this dissertation is the
first to study the optimal corridor rate width in a network setting.

In our model, every bank faces a trade-off between investing its resources
in liquid and illiquid assets, such as reserves and bonds, respectively. Liquid
assets can be used to cover withdrawals from depositors and therefore provide
a buffer against potentially large liquidity outflows. However, the illiquid asset
is more productive, in the sense that it yields a higher expected return. If
banks had perfect information regarding their liquidity outflows, they would
choose to hold the minimum necessary to pay all their depositors and invest
the remaining resources in the more productive asset. However, banks cannot
perfectly predict withdrawals when choosing their portfolio, and therefore face
a probability of being short of liquid assets. Our model features a central
bank that offers two standing facilities. The lending facility allows banks with
liquidity needs to borrow the necessary resources from the central bank at

3Bindseil (2016) states that the choice of the corridor width reflects the trade-off between
control over the interbank rate and interbank market activity. This trade-off is directly
related to ours. In the model developed in this dissertation, total liquidity is lower in
equilibria with more interbank activity.

4See Berentsen and Monnet (2008), Berentsen et al. (2010) and Bindseil and Jabłecki
(2011) for discussions on the optimality of a non-zero corridor.

5For discussions on how financial crises impact interbank transaction costs and liquidity
outflows, see Bindseil and Jabłecki (2011) and Bucher et al. (2020).
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Chapter 1. Introduction 12

the so-called discount rate. The deposit facility allows banks with an excess
of liquid assets to lend these to the central bank at the deposit facility rate.
Banks’ liquidity management involves two types of costs: the cost of having to
borrow from the central bank when liquidity holdings are not sufficient, and
the opportunity cost of holding excess liquidity.

The main feature of the model is an interbank market, which we model
as a network. A link extended by one bank to another allows the former to
borrow up to a pre-specified share of the latter’s liquid assets. We refer to this
share as the weight of the link. These links are interpreted as credit lines that a
potential borrower must open with its counterparty before it can obtain a loan.
This setup captures the fact that interbank trading is mainly characterized by
stable relationships between banks.6 We assume there is a cost of establishing a
credit line since it requires sustaining personal relationships/working relations
from the borrower to the counterparty. Cohen-Cole et al. (2015), for example,
argue that, in the Italian interbank market, operations simply consist of a
phone call between banks’ managers and are executed fast, which suggests
a prior relationship between the parties. The linking cost can be interpreted
as sustaining this relationship. Note that this setup allows for reciprocated
links, i.e. two banks can both extend a link to the other, thereby establishing
mutual credit lines. But it is still the case that each one must pay the cost of
establishing them. The existence of this market gives rise to local strategic
substitution effects between banks’ own liquidity holdings. When a bank
increases its investments in liquid assets, it also increases how much liquidity
banks that connect to it can access through the market. This, in turn, generates
incentives to allocate more of their own resources to illiquid assets.

Moreover, it is assumed that banks incur a marginal cost when lending
liquid assets in the interbank market. As in Bucher et al. (2020), this cost
can be associated with financial regulations and/or creditworthiness checks.7

Banks observe how costly it is to trade in the interbank market only after credit
lines are already established. When the interbank transaction cost is realized,
a bank will be willing to lend to a counterparty only if the expected profit
of the loan is weakly higher than the outside option, which is lending to the

6For evidence on the stability of interbank relationships, see Blasques et al. (2018) for
the Dutch market, Dordal i Carreras et al. (2021) for the German market, and Afonso et al.
(2013) for the US market. See Müller (2006) for a similar interpretation of links as credit
lines.

7Bucher et al. (2020) argue that interbank transaction costs can be associated with
asymmetric information even if the model does not explicitly account for such asymmetry
(for example, private information regarding default risk). The authors argue that lenders, to
avoid exposing themselves to any sort of credit risk, engage in costly creditworthiness checks,
which removes any asymmetries. This, in turn, allows them to assume that all observed
interbank transactions are risk-free.
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Chapter 1. Introduction 13

central bank. The central bank’s deposit facility rate, thus, sets a lower bound
on the interest rate that can be charged in interbank loans. In principle, the
discount rate would set the upper bound. However, as Whitesell (2006) points
out, if there are any stigma effects in borrowing from the central bank, then the
market rate that is equivalent to borrowing at the discount window is higher
than the discount rate.8 We refer to this rate as the effective discount rate,
which effectively sets an upper bound on the interbank rate. This, in turn,
implies that a bank that is short of own liquidity holdings will borrow from
the central bank if either what it can borrow in the interbank market is not
sufficient to cover its liquidity outflows, or no bank is willing to lend resources
to it at a rate lower than the effective discount rate due to prohibitively high
interbank transaction costs.

Banks’ decisions to create interbank credit lines are mainly affected by
the size of the corridor width relative to the cost of sustaining a relationship
with a potential lender. A low relationship cost increases banks’ incentives to
invest in these relationships because the interbank market provides a liquidity
source that is potentially cheaper than the central bank’s lending facility. On
the other hand, when the corridor is too narrow, a prohibitively high interbank
transaction cost becomes more likely. In this case, the probability that a bank
with liquidity needs will have to borrow resources exclusively at the central
bank’s lending facility, even if it established credit lines with other banks,
increases. Because setting credit lines is costly, the incentive to do so in the
first place reduces. Therefore, the network of interbank relationships is more
connected when the linking cost is low and the corridor width is wider.9

Throughout this dissertation, we make the following two simplifying
assumptions, so as to yield a tractable model. First, we adopt the common
simplifying assumption that only one bank is hit by a liquidity outflow per
period.10 With this assumption, the amount that an individual bank can choose
to borrow in the interbank market is fully determined by the links it extends.
This follows from the fact that if a bank is hit by an adverse liquidity shock,

8For evidence of stigma effects, see Armantier et al. (2015) for the U.S and Lee (2016)
for the UK and the euro area. For a formal treatment, see Ennis and Weinberg (2013).
To simplify the exposition, we abstract from other factors that can make banks willing to
borrow at the interbank market at a rate higher than the discount rate (such as central
bank’s collateral requirements).

9Blasques et al. (2018) estimate a network model using Dutch interbank market data and
show that a wider corridor increases a bank’s incentives to operate outside of its established
relationships. In the model presented in this dissertation, this can be interpreted as higher
incentives for a bank to establish new credit lines.

10This assumption has been mainly used to study the risk of contagion in interbank
networks. We make use of this assumption in this dissertation, but we abstract from the
possibility of contagion. See Upper (2011) for a survey on contagion in interbank markets,
which suggests that, in this setting, contagion arising from banks’ defaults are unlikely.
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Chapter 1. Introduction 14

then it knows that other banks have not been hit and, therefore, will not borrow
resources through their interbank credit lines. Second, when a bank decides to
borrow in the interbank market, both borrower and lender must negotiate
the interest rate on the loan. We will make the simplifying assumption that
the borrower makes a take it or leave it offer to the lender. In this case, the
borrower will offer the rate that makes the lender indifferent between lending in
the interbank market and lending to the central bank. This assumption implies
that a bank with an incoming link does not want to hold more liquidity only
to lend to other banks, since an interbank loan yields a return equal to lending
liquid assets to the central bank. Therefore, holding liquidity is valuable to a
bank only because it provides a buffer against liquidity outflows.

In this setting, we first characterize the unique equilibrium of banks’ liq-
uidity holdings for any network. Then, we endogenize banks’ linking decisions
to characterize the equilibrium network in the network formation game. We
use this to demonstrate that the central bank faces a trade-off between the
variance of the interbank rate and total amount of liquidity held by the bank-
ing system when optimally deciding the corridor width. We provide sufficient
conditions such that the optimal corridor width is different from the width
that minimizes the variance of the interbank rate. Furthermore, we provide a
numerical example that shows how the central bank may implement a sub-
optimal corridor width if it does not account for how banks optimally change
their links when the corridor changes. We conclude our analysis by presenting
comparative statics results regarding the optimal corridor width with respect
to the model’s structural parameters. We show that small and large changes
in the parameters may have qualitatively different implications for how the
central bank should optimally change the corridor width.

A novel contribution of this dissertation is to provide a micro-foundation
for the linear-quadratic payoff framework analyzed in Ballester et al. (2006) in
the context of banks’ liquidity management problem. This framework has been
commonly used to study a variety of settings due to its analytical tractability.11

We provide a sufficient condition for the existence and uniqueness of a
Nash equilibrium in the choice of liquid assets for any fixed network. This
condition can be generalized to any network game where players choose a
single continuous variable, payoffs are linear-quadratic and the game displays
local payoff substitutability.

We then proceed by providing a sharp equilibrium characterization of
the network formation game when the equilibrium is strict: every strict Nash

11See, for example, König et al. (2014) for applications on trade and interbank networks,
Bramoullé et al. (2014) for crime networks and König et al. (2019) for R&D networks.
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Chapter 1. Introduction 15

equilibrium network is a complete core-periphery graph.12 This characteriza-
tion is consistent with the empirical evidence on interbank market networks,
which has identified core-periphery structures in many countries.13

Furthermore, we study the problem of a central bank whose objective
is to optimally define standing facilities rates. In order to do so, we define a
loss function for the central bank, which takes into account the volatility of
the interbank rate and total liquidity holdings. We then show that the central
bank’s problem reduces to the choice of the corridor width that minimizes its
loss function, where the corridor width is defined as the spread between the
effective discount rate and the central bank’s deposit facility rate. Note that,
in this case, the minimum corridor width that the central bank can choose is
not zero. Even if it sets the discount rate equal to the deposit facility rate,
the effective discount rate would still be higher than the latter due to stigma
effects.

Under certain restrictions on the range of the linking cost, we can derive
general properties with respect to the optimal corridor width. More specifically,
we assume parameter ranges such that the star network with weighted links
directed to the center is the equilibrium network. This simplifies the problem
because the equilibrium link weight changes continuously with respect to the
corridor width, which, in turn, implies that total liquidity holdings also changes
continuously.14 Also, these restrictions guarantee that the equilibrium is unique
for every size of the corridor width.

We prove that, as long as the number of peripheral banks is not too
small, it is not optimal for the central bank to set the minimum corridor
width. The key intuition is that for too narrow corridors, peripheral banks
choose to borrow a very small share of the center’s liquidity, which, in turn,
increases these banks’ incentives to hold a high amount of liquidity. In this
case, the central bank can reduce its loss by widening the corridor. Although
this implies a less precise targeting of the interbank rate, the reduction in total
liquidity is sufficiently large to outweigh the increase in volatility.

Next, we present a numerical example that highlights the importance
of accounting for the endogeneity of the network when choosing the corridor

12Proposition 4.3 provides conditions such that a strict Nash equilibrium always exists.
Therefore, for each Nash equilibrium that is not strict, there exists a (different) Nash
equilibrium that is strict. Strict Nash equilibria are more robust to small perturbations
in banks’ payoffs than non-strict equilibria.

13The literature that has identified core-periphery type structures on empirical interbank
networks includes, but is not restricted to, Boss et al. (2004) for Austria, Soramaki et al.
(2010) for the UK, Craig and von Peter (2014) for Germany and Soramäki et al. (2007) for
the US.

14A discrete change in the number of banks in the core may lead to a discontinuous change
in total liquidity holdings with respect to the corridor width.
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Chapter 1. Introduction 16

width. That is, we assume that the central bank fails to account for how banks
in the periphery optimally choose their credit lines with the center. At first,
the central bank sets the corridor width to its minimum, which, given the
parameters, is in fact optimal. Then, the size of interbank transaction costs
reduces and the minimum corridor is no longer optimal. However, the central
bank, by assuming that banks’ credit lines with the center are fixed, does not
increase the corridor width because it (incorrectly) believes that total liquidity
would increase in response to a widening of the corridor.

Finally, we conduct comparative statics analysis regarding the optimal
corridor width with respect to changes in the size of interbank transaction costs
and liquidity outflows. We find that, for relatively small changes, the optimal
corridor width is decreasing in the former and increasing in the latter. The fact
that these two parameters have qualitatively different impacts on the optimal
corridor may seem counterintuitive at first. We show that this difference is
connected to how changes in interbank transaction costs and liquidity outflows
have distinct implications for how banks in the periphery adjust their links to
the center.

We then proceed by presenting a numerical example that illustrates
how large variations in these parameters introduce non-monotonic changes
in the corridor width. Our results show that the decision to widen or narrow
the corridor depends on the increase of transaction costs relative to liquidity
outflows, as well as on the increase of these variables relative to their original
size. Failing to account for one of these dimensions can lead to suboptimal
policy. This can help explain, for example, why some central banks during
the 2009 financial crisis narrowed the corridor rate at first, but later decided
to return to the pre-crisis width, stating that the narrower corridor was
responsible for the crowding out of the interbank market.

The remainder of this dissertation is organized as follows. Section 2
reviews the relevant literature. Section 3 describes the model. Section 4
presents the equilibrium characterization. Section 5 presents the central bank
problem, derives general properties for the optimal corridor width and conducts
comparative statics analysis. Section 6 concludes. All proofs are relegated to
the appendix.
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2
Literature Review

This dissertation relates to different literatures. First, it contributes to a
strand of the literature on financial networks that studies overnight interbank
loans. This work also adds to the literature on the optimal width of the corridor
rate established by central bank’s standing facilities and, more broadly, to the
literature on banks’ liquidity management and monetary policy.

We start by discussing our contributions to the literature on financial
networks. Cohen-Cole et al. (2015) and Denbee et al. (2020) study systemic
risk in a network model for the interbank market. The former paper focuses on
banks’ lending decisions in an integrated interbank market while abstracting
from liquidity risk. Assuming banks’ choose lending quantities à la Cournot, the
payoff functions are linear-quadratic as in Ballester et al. (2006). The latter
studies banks’ liquidity holdings decisions under the assumption that banks
have linear-quadratic utility with respect to liquid assets. Banks’ own liquidity
holdings can either be local strategic substitutes or complements, depending
on the value of structural parameters. Our approach differs from both of these
papers. In our model, banks explicitly solve a liquidity management problem.
Liquidity risk arises from adverse liquidity shocks, which generates incentives
for banks to hold liquidity and also to borrow liquid resources in the interbank
market. Under appropriate simplifying assumptions on the distribution of
liquidity outflows and interbank transaction costs, the model yields linear-
quadratic payoff functions. Therefore, we contribute to the literature by
providing a micro-foundation for Ballester et al. (2006)’s framework in the
context of banks’ liquidity management problem, which also encompasses, to
some extent, Denbee et al. (2020)’s framework (when liquidity holdings are
strategic substitutes).

Closer to this dissertation is Anufriev et al. (2021). The authors develop a
model of network formation for the interbank market. Banks enter the market
to adjust their end of the day expected reserves via bilateral agreements that
set the interest rate and amount of the loan between the two parties. A link is
two-sided, unlike in this dissertation where links are one-sided, and is defined
as the amount that one bank agrees to lend to another, which differs from our
interpretation of credit lines. This difference is crucial for the interpretation of
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Chapter 2. Literature Review 18

results on how changes in the corridor width affect the interbank market: while
Anufriev et al. (2021)’s analysis focus on what one would typically observe on
a single trading day, our analysis best describes the effects on the interbank
market over a longer period of time.

This dissertation contributes to the literature on the optimal corridor
width established by central bank’s standing facilities. To the best of our
knowledge, we are the first to study this topic in a network setting. The
literature has focused on the rationales behind the optimality of non-zero
corridors for central banks that have the interbank rate as their target rate.
Berentsen and Monnet (2008) are the first to address this issue. In a dynamic
general equilibrium model, the authors show that a non-zero corridor is optimal
as long as loans from the central bank to commercial banks require (costly)
collateral. Bindseil and Jabłecki (2011) develop a simple model of liquidity
management with two banks. The optimal corridor width is derived from a
central bank’s objective function that takes into account the volatility of the
interbank rate, interbank trading volume and central bank’s intermediation
costs. This dissertation makes a contribution by considering a new trade-
off that the central bank faces, which is between interbank rate volatility
and banks’ opportunity cost of holding reserves. We show that a minimum
corridor width is not optimal and, therefore, the proposed trade-off provides
new insights as to why a non-minimum corridor width can be optimal.

We also relate to the literature on banks’ liquidity management and
monetary policy. Whitesell (2006) compares interest rate corridors regimes and
reserves regimes in a model with an interbank market. In his model, banks face
a trade-off between holding liquid assets and lending in the interbank market,
while abstracting from illiquid investments. By modeling the market as an
endogenous network, we show that a corridor regime impacts the formation of
trading relationships in the interbank market, which, in turn, affects banks’
liquidity holdings and interbank trading. This effect is not considered in
Whitesell (2006) when deriving banks’ demand for reserves. Afonso and Lagos
(2015) employ a search model where a large population of atomistic banks
is randomly matched to model the interbank market. Bianchi and Bigio
(2021) closely follow Afonso and Lagos (2015) formulation of this market and
integrate it into a dynamic general equilibrium model. The authors study the
transmission and implementation of monetary policy in the context of banks’
liquidity management problem. These papers are very different conceptually
from this dissertation. They rely on search models as the modeling tool for
the interbank market, while we opt for an endogenous network approach.
Afonso and Lagos (2015) random matching in a large population of banks
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Chapter 2. Literature Review 19

implies that two banks have zero probability of being matched more than
once. Therefore, they cannot account for the empirically observed stability
in interbank relationships nor explain its core-periphery structure, while our
network approach can. Moreover, we are able to account for how changes in
the corridor width affect the endogenous formation of interbank relationships,
which, in turn, impacts banks’ liquidity holding decisions.
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3
Model Description

There is a set N = {1, 2, . . . , n} of players, with n ≥ 3, which we refer
to as banks. Each bank i has an amount wi of resources which it can invest in
a liquid asset zi and an illiquid asset xi = wi − zi. The illiquid asset yields an
expected return rx.

The central bank offers banks a deposit facility, in which banks can lend
resources to the central bank at the rate r, and a lending facility, known as
the discount window, in which banks can borrow resources from the central
bank at the so-called discount rate r̃. When r̃ is set at a penalty rate, i.e.
r̃ ≥ r, we assume that there exists a stigma cost in borrowing from the central
bank at the discount window. This implies that the market rate equivalent to
borrowing at the discount window is higher than the discount rate. We, thus,
define the effective discount rate r̄ as:

r̄ =

r̃ + δ, r̃ ≥ r

r̃, r̃ < r

where δ > 0 represents costs associated with stigma. Note that r̄ is the relevant
rate for a bank when borrowing from the central bank.

To prevent arbitrage opportunities the central bank sets r̄ > r. Other-
wise, banks would profit by borrowing from and then lending to the central
bank. Note that this implies r̄ − r ≥ δ > 0. We assume r̄ > rx > r. This
assumption is necessary for banks to hold a positive amount of both liquid
and illiquid assets in equilibrium.1

Banks can borrow liquid assets from other banks via the interbank
market. If bank i extends a link gi,l ∈ [0, 1] to bank l, it pays a linking cost
of κ̃gi,l, where κ̃ > 0, and it can choose to borrow up to a fraction ψgi,l of zl,
where ψ < 1. We set gi,i = 0,∀i ∈ N . This prevents the possibility of a bank
borrowing resources from itself. The total amount of liquid assets that bank
i can access through the market, which we refer to as accessible liquidity, is
equal to ∑j∈N ψgi,jzj ≡ yi,∀i ∈ N .2

1If rx ≥ r̄, banks would invest all of their resources in the illiquid asset, whereas, if
rx ≤ r, banks would only invest in the liquid asset.

2Denbee et al. (2020) have a similar definition of accessible liquidity, but use a different
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Chapter 3. Model Description 21

Interbank rate: For a bank l to be willing to lend to bank i, the expected
profit of the loan must be weakly higher than the outside option, i.e. lending
to the central bank. We assume that there exists a stochastic marginal cost c
in lending liquid assets via the interbank market, with cdf H(.) defined over
the support [0, c̄], with c̄ ≥ r̄− r. Hence, the interest rate of a loan from bank
l to bank i, ri,l, must satisfy:

ri,l − c ≥ r ⇔ ri,l ≥ r + c.

We assume that the borrower makes a take it or leave it offer to the
lender. This simplifying assumption implies that a bank with an incoming
link does not want to hold more liquidity only to lend to other banks since
an interbank loan yields an expected return equal to lending liquid assets to
the central bank. Hence, holding liquidity is valuable to a bank only because
it provides a buffer against liquidity shocks. Given this assumption, bank
i can borrow liquid assets from bank l in the interbank market at a rate
ri,l = r + c ≡ r̂(c), ∀ i, l ∈ N . Of course, bank i will only borrow resources via
the market if r̂(c) ≤ r̄ ⇔ c ≤ r̄ − r, otherwise it would find it more profitable
to borrow directly from the central bank at the discount window. We thus
define the realized interbank rate r(c) ≡ r + c, with c ∈ [0, r̄ − r]. Note that
the support of r(c) is [r, r̄].

Network: We define bank i’s links as gi = (gi,1, . . . , gi,n) ∈ Gi = [0, 1]n

and the network as g = (g1,g2, ...,gn). We say that a bank i connects to bank
j if gi,j > 0. If the link gi,j ∈ (0, 1), then it is said to be weighted. The network
is said to be directed, because i can connect to j, without j connecting to i.
We also define the undirected network ḡ, where ḡi,j = max{gi,j , gj,i} = ḡj,i.
The adjacency matrix G is defined as the n × n matrix in which the element
in the i-th row and j-th column is equal to gi,j.

Strategies: Each bank i has a set of strategies Si = [0, wi] × Gi. A
strategy profile si = (zi,gi) ∈ Si specifies the amount of liquid assets that
bank i holds, zi, and the share of other banks’ liquid assets it can borrow,
ψgi. The set of strategies of all banks is S = S1 × S2 × ... × Sn. A strategy
profile s = (z,g) ∈ S then specifies each bank’s own liquidity holdings,
z = (z1, z2, ..., zn), and links, g.

Timing: One randomly chosen bank is hit by a liquidity outflow ε ≥ 0
with cdf F (.) known to the bank. Agents that were not chosen are not hit by
any shock. Each bank must decide its strategy profile before a bank is chosen
and before the realization of ε and c. Suppose bank i is hit by a liquidity

interpretation for the links. The authors interpret a link gi,j as the probability of bank i
receiving credit from bank j.
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Chapter 3. Model Description 22

Figure 3.1: Visual representation of liquidity outflow.

zi zi + yiε1

zi zi + yiε2

zi zi + yi ε3

(a)

ziε1

zi ε2

(b)

Notes: Panel (a) presents the relevant regions of ε for bank i when c ≤ r̄ − r. Panel (b)
presents the relevant regions of ε for bank i when c > r̄ − r.

outflow. Consider first the case where c ≤ r̄ − r. We then have three possible
outcomes, which are represented in Panel (a) of Figure 3.1. If ε ≤ zi, then bank
i deposits the difference, zi − ε, at the central bank at the rate r. Otherwise,
ε > zi and bank i must borrow the difference, ε − zi, to cover its outflows. If
ε ≤ zi + yi, then bank i uses its credit lines to borrow the necessary amount of
resources in the interbank market at the rate r(c). If ε > zi+yi, then the most
that bank i can borrow in the market is not sufficient to cover the outflow and,
thus, it borrows yi at the rate r(c) and the remaining resources, ε− (zi + yi),
in the discount window at the rate r̄. Now consider the case where c > r̄ − r.
Then there are only two possible outcomes, which are represented in panel
(b) of Figure 3.1. If ε ≤ zi, then the bank proceeds as in the previous case.
Otherwise, ε > zi and bank i borrows the necessary resources exclusively at
the discount window at the rate r̄.3 Note that bank i does not use its credit
lines since it cannot borrow in the interbank market at a rate lower than r̄.

Payoffs: Let us break down the utility of bank i into three parts. First,
the expected profit from the investment in the illiquid asset is rx(wi − zi).

Second, if c ≤ r̄ − r, then bank i’s profit is:

Π(zi, c,gi) =
∫ zi

0
r(zi − ε)dF (ε)−

∫ zi+yi

zi

r(c)(ε− zi)dF (ε)−

−
∫ ∞
zi+yi

[r(c)yi + r̄(ε− (zi + yi))]dF (ε). (3-1)

3We adopt here the standard assumption that the central bank always has enough
resources to lend to the bank with liquidity needs (see Poole (1968)).
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Chapter 3. Model Description 23

If c > r̄ − r, then bank i’s profit is:

Π(zi, c,gi) =
∫ zi

0
r(zi − ε)dF (ε)−

∫ ∞
zi

r̄(ε− zi)dF (ε). (3-2)

The first term in (3-1) and (3-2) is the benefit from lending the excess reserves
to the central bank. The following terms are the cost from borrowing the
necessary resources from other banks in the interbank market (when r(c) ≤ r̄)
and from the central bank. Lastly, bank i pays the total cost of linking∑
j∈N κ̃gi,j.

The utility of bank i can then be written as:

ui(zi,gi) = rx(wi − zi) +
∫ c̄

0
Π(zi, c,gi)dH(c)− κ̃

∑
j∈N

gi,j. (3-3)

For the remainder of this dissertation we will assume that c ∼ U [0, c̄] and
ε ∼ U [0, ζ], where 0 < ζ < minj wj. The payoff function for bank i can then
be written as:4

u(zi,gi) = ζβzi −
γ

2z
2
i − λziyi + ζλyi −

λ

2y
2
i − κ

∑
j∈N

gi,j, (3-4)

where κ ≡ ζκ̃, β ≡ r̄ − rx, γ ≡ r̄ − r, λ ≡ γ
c̄

(r̄ − E[r(c)]) = γ2

2c̄ .
The term E[r(c)], which we refer to as expected interbank rate, is equal to∫ γ

0
r(c)
γ
dc = 1

2 (r̄ + r) . Our model thereby provides, in the context of banks’
liquidity management problem, a micro-foundation for the linear-quadratic
payoff framework. This directly implies the existence and uniquenesses of an
interior equilibrium in the choice of liquidity holdings for any given network,
as we show in the next section.

Note that we have omitted from (3-4) the region such that zi + yi > ζ.5

In terms of equilibrium analysis of the network formation game, the results are
the same whether we consider or not this region. To obtain intuition for this,
note first that a higher yi is valuable for bank i only because it decreases the
probability that i has to resort to discount window borrowing when r(c) ≤ r̄.
However, if zi + yi ≥ ζ, then this probability is zero because i can cover any
liquidity outflow that hits it using only its interbank credit lines. It is then
straightforward that if zi + yi > ζ, then i would profit from decreasing the
weight on some of its positive links such that zi+y′i = ζ. This would reduce the
cost of linking while keeping the previously mentioned probability equal to zero.
Hence, for any strategy profile si = (zi,gi) such that zi + yi > ζ, there exists
a profile s′i = (zi,g′i) such that zi + y′i = ζ and u (s′i) > u (si). Moreover, for
equilibrium analysis when the network is fixed, we provide sufficient conditions

4For expositional clarity, we multiplied (3-3) by ζ and subtracted all constant terms.
5See the Appendix for a complete derivation of the payoff function.
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Chapter 3. Model Description 24

in the next section such that zi+yi ≤ ζ for every Nash equilibrium in the choice
of liquid assets and any given network.

The payoff function is strictly concave in own liquidity holdings, with
concavity parameter γ =

∣∣∣∣∂2ui

∂z2
i

∣∣∣∣ . From bank i’s perspective, an increase in
liquidity holdings from a bank such that gi,l > 0 produces a positive externality:

∂ui
∂zl

= (ζ − (zi + yi))λψgi,l > 0.

This increase also creates incentives for i to reduce its own allocation to liquid
assets:

∂2ui
∂zi∂zl

= −λψgi,l < 0.

Together, we say that the network game displays local positive externalities
and strategic substitutability.

The best response function for bank i, given the network g and z−i is:

zi(g, z−i) = ζβ

γ
− λ

γ
yi. (3-5)

Substituting (3-5) in (3-4) we obtain the value function, which can be written
as:

V (yi,g) = v(yi)− κ
∑
j∈N

gi,j, (3-6)

where v(.) is strictly increasing and concave with respect to yi. We refer to
v(.) as the gross value-function. A formal derivation of the value function is
provided in the Appendix.
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4
Analysis - Network Formation

In this section, we provide the equilibrium analysis of our model. First,
we provide a sufficient condition such that an interior Nash equilibrium in
the choice of liquidity holdings exists for any fixed network. Then, we present
the formal definition of a complete core-periphery network and show that in
any strict Nash equilibrium of the network formation game the equilibrium
network displays a core-periphery structure. We proceed by deriving a sufficient
condition such that an equilibrium exists for any linking cost value, as well as a
(weaker) condition such that an equilibrium with a non-empty network exists.
Lastly, we turn to the case when the equilibrium network is a star with at
least one weighted link. We provide general properties that will be useful for
the next section when we study how the equilibrium network adapts to changes
in the corridor width, γ = r̄ − r.

Our first proposition presents a sufficient condition for the existence of
a unique interior Nash equilibrium in the choice of liquid assets for any fixed
network.

Proposition 4.1. If ψ < γ
λ(n−1) and β < λ, then there exists a unique NE in

the choice of z and the unique NE is interior for any given network g.

Let us build intuition for the above proposition. First, β and ψ sufficiently
small guarantee that, in any NE, zi + yi ≤ ζ , ∀i ∈ N . To see this, note that a
smaller ψ reduces how much liquidity a bank can access through the interbank
market, yi, while a smaller β increases banks’ incentives to allocate fewer
resources to liquid assets, zi. Hence, we can consider banks’ payoffs as in (3-4).

Next, consider, without loss of generality, bank i’s payoff function. For i
to choose a positive amount of liquidity holdings, its own concavity parameter
must be high enough to counter effects of local substitutability. This translates
into the following confition in our model, γ > ∑

j 6=i

∣∣∣ ∂2ui

∂zi∂zj

∣∣∣ = ψλ
∑
j 6=i gi,j.1 The

term ψλ measures the level of this substitution effect,
∣∣∣ ∂2ui

∂zi∂gi,jzj

∣∣∣, and ∑j 6=i gi,j

the intensity at which these effects impact bank i through the network. Since
gi,j ≤ 1, ∀i, j ∈ N , the maximal value of ∑j 6=i gi,j equals n − 1, which yields
the condition γ > ψλ(n− 1).

1Kolstad and Mathiesen (1987) refer to this condition as diagonal dominance when
deriving sufficient conditions for the uniqueness of equilibrium in a Cournot game.
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Chapter 4. Analysis - Network Formation 26

Figure 4.1: Two Examples of Core-Periphery Graphs.
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(b)
Notes: Panel (a) and Panel (b) display core-periphery networks. In both cases, C(ḡ) =
{1, 2, 3} and P (ḡ) = {4, 5, 6, 7}. The graph in Panel (a) is not a complete core-periphery
graph because 3 ∈ C(ḡ) and 7 ∈ P (ḡ), for example, are not connected.

Before presenting the following proposition, which characterizes equilib-
rium networks, we provide a formal definition of a complete core-periphery
network for undirected networks.

Definition 4.1. A core-periphery network ḡ is such that there are two disjoint
groups of players, the periphery P (ḡ) and the core C(ḡ). P (ḡ) is such that
players are not connected (i.e. ∀i, j ∈ P (ḡ), ḡi,j = 0), while C(ḡ) is such that
players are all connected (i.e. ∀l, k ∈ C(ḡ), ḡl,k 6= 0). A complete core-periphery
network is such that every player in P (ḡ) is connected to every player in C(ḡ)
(i.e. ∀i ∈ P (ḡ) and k ∈ C(ḡ), ḡi,k 6= 0).

Figure 4.1 displays two examples of core-periphery networks. In both
cases, C(ḡ) = {1, 2, 3} and P (ḡ) = {4, 5, 6, 7}. But note that only the graph in
Panel (b) is a complete core-periphery graph since, in Panel (a), bank 3 ∈ C(ḡ)
and 7 ∈ P (ḡ) are not connected.

Note that Definition 4.1 applies only to undirected networks. The network
that is formed from banks’ linking decisions, g, is directed since a bank i can
extend a link to bank j, without j extending a link to i. We, thus, provide an
equilibrium characterization to the undirected network ḡ, which we defined in
the previous section as the closure of g (i.e. ḡi,j = max{gi,j , gj,i}).

Proposition 4.2. In any strict NE, s = (z,g), ḡ is a complete core-periphery
network. Furthermore, there exists a partition {C(ḡ), P (ḡ)} of N such that:

– All peripheral banks display the same level of liquidity holdings.

– Core banks display higher levels of liquidity holdings than peripheral
banks.
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Chapter 4. Analysis - Network Formation 27

The characterization of the equilibrium network ḡ is consistent with the
empirical literature that has identified core-periphery structures in several
interbank markets. To provide some intuition for the result, suppose we have
three banks i, k and j, with zi ≤ zk. If i connects to k , then it must be
that j also connects to k. To see this, suppose that j does not connect to k.
Recall that v(.), i.e. the gross value function, is increasing in the amount of
accessible liquidity. Then, it must be the case that i connects to every bank l
such that zl ≥ zk with gi,l = 1, l 6= i. If this were not the case, then i could
weakly increase its payoff by reducing its link with k and increasing by the
same amount a link to a bank with a weakly higher amount of liquid assets.
An analogous argument tells us that j can only connect to banks that hold an
amount of liquidity strictly higher than zk. Hence, yi ≥ yj +ψgi,kzk. That is, if
bank j were to extend a link of weight gi,k to k, it would still have an accessible
liquidity weakly lower than i. Recall that v(.) is concave. So the marginal
benefit of bank j creating this link is weakly higher than the marginal benefit
of i, while the marginal cost, κ, is constant. Therefore, if i finds it weakly
profitable to link to k, so does j and we have reached a contradiction. We thus
have that if some bank k receives at least one incoming link from a bank that
holds weakly less liquid than it, then every bank in the network connects to
k. The characterization of ḡ then follows from the fact that if ḡ 6= 0, then a
bank that holds minimum liquidity in equilibrium always connects to all banks
that hold strictly more liquidity. We provide the following numerical example
of two strict Nash equilibria to illustrate Proposition 4.2.

Example 1. Assume n = 11, γ = 50, β = 5, λ = 15.625, ψ = 0.99, κ =
0.44, ζ = 100, where {γ, β, λ} are expressed in basis points. Then there exists
two different equilibrium networks: a complete core-periphery graph with 5
banks in the core and binary links only (i.e. gi,j ∈ {0, 1}, ∀i, j ∈ N), as depicted
in Panel (a) of Figure 4.2, and a complete core-periphery graph with 4 banks
in the core and binary links only, as depicted in Panel (b) of Figure 4.2. Note
that when links are all binary, all core banks display the same level of liquidity
holdings. Also, we can see that, for the same set of parameter values, total
liquidity is higher when the network is sparser.

Proposition 4.3 provides existence results for strict Nash equilibria in the
choice of liquidity holdings and links. We present a sufficient condition such
that an equilibrium exists for any linking cost κ. We also provide a (weaker)
condition such that an equilibrium with a non-empty network exists. Let us
define β̂ ≡ γλ2ψ(γ+λψ)

2γ2(γ−λ)+γλ2ψ+λ3ψ2 and note that β̂ is strictly smaller than λ.
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Chapter 4. Analysis - Network Formation 28

Figure 4.2: Equilibrium Networks and Liquidity Holdings.

Color z
*

Core 4.47
Periphery 3.09

(a)

Color z
*

Core 5.19
Periphery 3.58

(b)
Notes: Liquidity holdings are rounded to the second decimal. Panel (a) presents an equilib-
rium network with 5 banks in the core. Panel (b) presents an equilibrium network with 4
banks in the core. In both panels, all links are binary, i.e. gi,j ∈ {0, 1},∀i, j ∈ N .

Proposition 4.3. If β < β̂, then for any linking cost κ ∈ R+ there exists
a strict NE, s = (z,g). If β < λ, then there exists κ such that a strict NE,
s = (z,g), exists and the equilibrium network g is non empty, i.e. g 6= 0.

To satisfy at least one of the conditions above, it is sufficient for the
return on the illiquid asset rx to be sufficiently close to r̄ (i.e. β sufficiently
close to zero). To get some intuition for Proposition 4.3, define K as the set
of linking costs κ such that a strict NE exists. Note first that there always
exists a sufficiently high linking cost such that it is never profitable for a bank
to extend a link. Therefore, set K is always non-empty. However, it may be
the case that, for all values of κ in K, the corresponding equilibrium always
displays the empty network.

To illustrate the conditions in Proposition 4.3, let us consider a complete
core-periphery graph with nC ∈ {2, . . . , n − 1} banks in the core and binary
links only, which we refer to as g (nC). For s = (z,g (nC)) to be a strict NE,
the linking cost must lie in between two linking thresholds κ̄(nC) and κ(nC),
which are formally defined in the Appendix. These thresholds are such that:
(i) if κ ≥ κ(nC), then a bank in the core does not find it profitable to extend
a link to a peripheral bank, (ii) if κ ≤ κ̄(nC), then a bank in the periphery
does not find it profitable to reduce the weight of the link it extends to a core
bank. The condition β < λ implies κ̄(nC) > κ(nC),∀nC , which guarantees the
existence of a κ that satisfies (i) and (ii) simultaneously for a given nC .
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Chapter 4. Analysis - Network Formation 29

Figure 4.3: Visual representation of the intervals K(nC).

κ̄(2)
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(b)

Notes: Consider n = 5 and nC ∈ {2, 3, 4}. Panel (a) displays the case when adjacent intervals
have an empty intersection. Panel (b) displays the case when adjacent intervals intersect.

Moreover, define K(nC) ≡ [κ(nC), κ̄(nC)] and consider the set⋃
nC
K(nC) ⊆ K. Figure 4.3 displays two possibilities for the union of K(nC).

For simplicity, we assume n = 5. In Panel (a), adjacent intervals do not inter-
sect and, therefore, the union of K(nC) is not an interval in R+. In Panel (b),
we have that adjacent intervals always overlap and, thus, [κ(n− 1), κ̄(2)] =⋃
nC
K(nC) ⊆ K. When we also consider linking cost intervals such that the

equilibrium network is the empty, star or complete network, then the overlap-
ping condition guarantees that K = R+. In turn, the overlapping condition
holds if β < β̂.

Next, we derive properties of strict NE that display a star network with
at least one weighted link. More specifically, we show that, in this case, the
equilibrium is unique and the equilibrium link weight changes continuously
with respect to the corridor width. These results will be useful for the next
section when we study how the equilibrium network adapts to changes in the
corridor width, γ = r̄ − r.

Define gs as the set of networks g that are a star network with at least
one weighted link.2 Also, consider two linking cost thresholds κ0 ≡ v′(0)ψzs

and κ1 ≡ v′ (ψzs)ψzs, where zs = ζβ
γ

is the liquidity holding of the center. κ0

and κ1 represent the marginal benefit of a bank increasing the weight of the
link to the center when its accessible liquidity is zero and zs, respectively. We
then have the following result.

2Formally, a star network g is such that some bank i receives an incoming link from every
other bank (i.e. ∀j 6= i, gj,i 6= 0) and the remaining banks do not receive any incoming links
(i.e. ∀j, k 6= i, gj,k = 0).
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Chapter 4. Analysis - Network Formation 30

Proposition 4.4. Assume β < λ. Then a strict NE s = (z,g) exists for some
g ∈ gs if and only if κ ∈ (κ1, κ0). Moreover:

– All peripheral banks extend a weighted link to the center and the weight
is the same across banks.

– The equilibrium link weight g∗ ∈ (0, 1) satisfies κ = v′ (ψg∗zs)ψzs, where
zs = ζβ

γ
is the liquidity holding of the center.

– s is the unique strict NE.

We briefly provide some intuition for the results. First, for g ∈ gs to be
part of an equilibrium, the linking cost must be low enough for a peripheral
bank to not find it profitable to access zero liquidity (i.e. κ < κ0). But it also
must be sufficiently high to prevent a peripheral bank from accessing as much
liquidity as it can from the center (i.e. κ > κ1).

The fact that links extended to the center are all of equal weight follows
from the fact that, in any strict NE, s = (z,g), any two banks i and k that
are not connected have the same strategy profile in equilibrium (Lemma 3).
To see why this holds, suppose si 6= sk and, without loss of generality, assume
u (si) ≥ u (sk). Since i does not connect to k, a possible deviation for k is
s′k = si, which is weakly profitable for bank k.

The condition for the equilibrium weight g∗ can be obtained by simply
taking the derivative of the value function in (3-6) with respect to the link
extended to the center. Note that, by the strict concavity of v(.), we can
uniquely solve for g∗ and the solution is continuous in the parameters of the
model (including the corridor width, γ).

Finally, we discuss the uniquenesses of s. Since v′(.) is strictly decreasing,
condition κ = v′ (ψg∗zs)ψzs shows that any link to the center g′ ∈ [0, 1]
different from g∗ cannot be part of an equilibrium. Consider then a network
g′ with at least two banks in the core. In any strict NE that displays g′, some
bank i extends at least two links. In equilibrium, banks extend at most one
weighted link (Lemma 1). Hence, i extends a link of weight one to some bank
j. From (3-5), we have that j holds weakly less liquidity than zs. From the
concavity of v(.), if i were to only connect to j, it would again extend a link of
weight one. Since zj ≤ zs, this implies that it is optimal for a peripheral bank
in a star to extend a link of weight one to the center. This contradicts the fact
that peripheral banks extend a link of weight less than one to the center in the
strict NE s.
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5
Optimal Width of the Corridor Rate

5.1
Preliminaries

The model developed in this dissertation contains two variables that are
under the control of the central bank: the discount rate r̃ (which ultimately
defines r̄) and the deposit facility rate r. These rates affect banks’ liquidity
holdings and credit lines decisions since they determine the cost of borrowing
from the central bank when necessary and the opportunity cost of holding
excess liquidity. In addition, r̄ and r also impact the distribution of the
realized interbank rate r(c) = r + c, where c is the marginal lending cost for
interbank loans. To see the this, recall that r(c) only assumes values in [r, r̄].
Also, the interbank rate expected value, E[r(c)] = 1

2 (r̄ + r) , and volatility,
V ar[r(c)] = 1

12(r̄ − r)2, are defined by the standing facilities rates.
Following the design of central banks’ operational frameworks in Bindseil

(2016), we assume that the central bank sets a target rate r∗ for the expected
interbank rate E[r(c)]. We abstract from how the central bank sets the level of
the target rate r∗. It is assumed that r∗ derives from an exogenous goal (e.g.
price stability). Hence, the primary goal of the central bank is to choose a pair
{r̄, r} such that:

r∗ = r̄ + r

2 . (5-1)
The following section explores how the central bank should set the

optimal corridor width, γ = r̄ − r, conditional on its target to the interbank
rate. The central bank faces a trade-off when setting the corridor width: a
narrower corridor reduces the variance of the interbank rate, allowing the
central bank to target it with higher precision. However, the equilibrium
network may change in response, yielding a sparser network, in which interbank
activity is lower, and, thus, increasing total liquidity holdings in equilibrium.
This incurs an implicit cost since these funds could be invested in the more
productive illiquid asset. To study this trade-off, we define a loss function
to the central bank which is a convex combination between interbank rate
volatility and total liquidity holdings. The central bank chooses a pair of
standing facilities rates {r̄, r} to minimize its loss function. We show that
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Chapter 5. Optimal Width of the Corridor Rate 32

as long as the expected return on the illiquid asset, rx, has a positive premium
with respect to the target rate, the central bank’s problem can be reduced to
the choice of the corridor width that minimizes the loss function.

In light of this, let us characterize the central bank’s problem. The central
bank controls r̄ and r, which is equivalent to choosing r̄ and γ = r̄ − r.
Define the set of endogenous parameters as {r̄, γ}, and the set of exogenous
parameters as Φ = {c̄, δ, rx, ψ, κ, ζ}. Starting from a strict NE s = (z,g), the
volatility of the interbank rate is given by:

V (γ) ≡ γ2

12 . (5-2)

Total liquidity is defined as:

Z(r̄, γ) ≡
n∑
i=1

zi (r̄, γ,Φ) . (5-3)

We define a loss function to the central bank that is increasing in both
the volatility of the interbank rate and total liquidity holdings. We opt for the
most parsimonious specification, which is a convex combination of these terms:

L(r̄, γ) = θV (γ) + (100− θ)Z(r̄, γ) ,

where θ ∈ (0, 100) is given and measures the relative importance of the precise
targeting of the interbank rate for the central bank.1

To fully characterize the problem, let us discuss the restrictions on {r̄, γ}.
First, recall the assumption c̄ ≥ r̄ − r ⇔ c̄ ≥ γ. This assumption guarantees
that the interbank rate, r(c), can assume any value in between r and r̄. Second,
we have a no arbitrage condition r̄ > r, which implies r̄ − r ≥ δ ⇔ γ ≥ δ. We
also have condition (5-1), which can be rewritten as r∗ = r̄− γ

2 . We make one
last assumption that allows us to write the loss function and the constraints
in terms of γ only. We assume that the expected return on the illiquid asset,
rx, has a positive premium with respect to the target rate. We can then write:

rx = r∗ + η, (5-4)
with η > 0, where η can be interpreted as a liquidity premium, risk premium, or
a combination of both. Replacing (5-4) in (5-1), yields the following condition:

β = γ

2 − η. (5-5)
Replacing (5-5) in (3-5) allows us to rewrite (5-3) as Z(γ) ≡ ∑n

i=1 zi (γ,Φ)
where Φ = {c̄, δ, η, ψ, κ, ζ}. We are now able to define an optimal corridor
width.

1Alternatively, one could define the convex combination for θ ∈ (0, 1). We opt for the
interval (0, 100) just for expositional clarity of the numerical examples.
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Chapter 5. Optimal Width of the Corridor Rate 33

Optimal corridor width: γ ∈ R+ such that:

minγ {L(γ) | c̄ ≥ γ ≥ δ} . (5-6)
The solution to (5-6) is denoted as γ∗ (Φ, θ). When γ∗ (Φ, θ) = δ, we

say that the minimum corridor width is optimal. For the remainder of this
dissertation, we assume that δ > 2η and 8η > c̄. The first condition guarantees
that for every γ ∈ [δ, c̄], β > 0, and, thus, liquidity holdings are always strictly
positive. The second assumption implies λ > β, which, by Proposition 4.3,
assures that for some linking cost value we have a non-empty equilibrium
network.

5.2
The Star Network Case

This section analyzes the optimal corridor width. We first derive restric-
tions on the range of the linking cost, κ, such that for each corridor width
the equilibrium network is a star with weighted links directed to the center.
In this setting, the equilibrium is unique and total liquidity holdings decrease
continuously with respect to increases in the corridor width. Our main result
shows that, if the number of peripheral banks is larger than some threshold,
then it is not optimal for the central bank to set the corridor to its mini-
mum width, δ. This result follows from the fact that for corridors that are
too narrow, peripheral banks access a small share of the center’s liquidity and,
therefore, hold large amounts of liquidity. We then provide a numerical exam-
ple that illustrates how failing to account for the endogeneity of links can lead
to suboptimal policy.

In order to derive general properties regarding the optimal width of the
corridor rate, we restrict our analysis to sets Φ such that for every γ ∈ [δ, c̄],
the equilibrium network is a star network with weighted links directed to
the center. This restriction in the set of exogenous parameters simplifies the
problem for two reasons: first, it rules out multiplicity of equilibria, as we can
see from Proposition 4.4. Second, it implies that Z(γ) (and, therefore, L(γ)) is
continuous with respect to γ. To see this second point, let us further analyze
how the equilibrium network changes with respect to γ. From Proposition 4.4,
the equilibrium link weight g∗ must satisfy:

κ = v′ (ψg∗zs)ψzs. (5-7)
From the strict concavity of v(.), we can uniquely solve for g∗. The

solution will then be continuous in γ. Hence, Z(γ) is continuous because the
intensity of the link g∗ changes continuously with γ, while the size of the core
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Chapter 5. Optimal Width of the Corridor Rate 34

remains constant.2

Next, we ask what restrictions to the set Φ are necessary to ensure that,
for every γ ∈ [δ, c̄], the corresponding strict NE displays a star network with
weighted links. From Proposition 4.4, we have that for each γ, it must be that:

κ ∈ (κ1(γ), κ0(γ)), (5-8)
where we have made explicit that linking cost thresholds depend on the corridor
width.3 Both κ1(γ) and κ0(γ) are increasing in γ. Hence, to satisfy (5-8) for
all γ, it is sufficient:

κ ∈ (κ1(c̄), κ0 (δ)) . (5-9)
Finally, we need κ1(c̄) < κ0 (δ) to guarantee that, for some positive

κ, (5-9) holds. This inequality is satisfied as long as
√

c̄2+4ηc̄−4η2

2 < δ and
2(c̄2−δ2)
(c̄−2η)2 < ψ < 1. Unless otherwise stated, we take Φ such that (5-9) holds.

We now turn to the properties of γ∗ (Φ, θ). Note that L(γ) is continuous.
Since [δ, c̄] is compact, γ∗ (Φ, θ) is always non-empty. Our first proposition
establishes conditions under which is not optimal for the central bank to set
the corridor width to its minimum size, δ. More specifically, it shows that, for
any weight that the central bank assigns to the targeting of the interbank rate,
θ, one can find a (finite) number of banks in the periphery such that it is not
optimal for the central bank to minimize the interbank rate variance.

Proposition 5.1. For each θ, there exists a n̄ ∈ R such that, for all n > n̄, the
loss function, L(γ), is decreasing in the size of the corridor at γ = δ. Moreover,
the optimal corridor width, γ∗ (Φ, θ), is then strictly larger than the minimum
corridor width, δ.

This result highlights the importance of the trade-off between volatility
of the interbank rate and total liquidity to the central bank’s decision. L(γ)
decreasing at γ = δ implies that the central bank can reduce the loss function
by a sufficiently small increase of the corridor width. Although this implies a
higher variance of the interbank rate, there exists a marginal reduction in total
liquidity that compensates for the increase in volatility. It then follows from
this trade-off that the minimum corridor width is not optimal.

Let us discuss the conditions under which Proposition 5.1 holds. First,
recall the assumption δ > 2η. Note that, if to the contrary δ ≤ 2η, then the
optimal corridor is the minimum corridor since β < 0 when γ < 2η, which, in

2Changes in the equilibrium network that come from discrete changes in the size of the
core can create discontinuities in Z(γ).

3The exact expressions for the linking thresholds are κ0(γ) ≡ ζ2ψ
8c̄
(
γ2 − 4η2) and κ1(γ) ≡

ζ2ψ
16c̄2

(
2c̄
(
γ2 − 4η2)− ψ(2c̄− γ)(γ − 2η)2) .
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Chapter 5. Optimal Width of the Corridor Rate 35

turn, implies that total liquidity is zero in equilibrium. Hence, in the presence
of stigma costs, the proposed trade-off affects central bank’s optimal decision.

Furthermore, the fact that n has to be sufficiently large is intuitive. Note
that the bank at the center of the star holds zs = ζ

(
1
2 −

η
γ

)
, which is strictly

increasing in the size of the corridor. Therefore, for total liquidity to decrease,
it must be that banks in the periphery reduce their liquidity holdings. It
follows that the larger the number of banks in the periphery, the more liquidity
decreases when the corridor increases. Of course, how large n must be depends
on θ.4 More precisely, the more weight the central bank puts on the interbank
rate volatility, the larger must be n.

Next, we present a numerical example to illustrate Proposition 5.1.

Example 2. Assume n = 3, c̄ = 70, δ = 60.6, η = 8.8, ψ = 0.9, κ =
6.9948 ∗ 10−7, ζ = 0.036, θ = 99.9897, where {c̄, δ, η} are expressed in basis
points. Then γ∗ (Φ, θ) ≈ 64.4. Panel (a) of Figure 5.1 displays the loss function
over the relevant range of the corridor width. As we can see, it is not optimal to
set a corridor too close to δ. Panel (b) shows that this is the case because the
equilibrium link weight g∗ is close to zero, which implies an excessive amount
of total liquidity. As we increase the corridor width, peripheral banks start
strengthening their link to the center, total liquidity goes down and the loss
function decreases up to the point that it reaches the minimum. At this point,
the gain from reducing total liquidity no longer compensates for the increase
in volatility that comes with a wider corridor. Note that even for θ close to
100, it is still the case that for relatively low values of n, the optimal corridor
width is larger than δ.

To understand the role that the endogeneity of the network plays
in Proposition 5.1, let us discuss how the widening of the corridor affects
peripheral banks’ incentives to hold liquidity. On one hand, a wider corridor
implies a higher r̄, which increases the cost of being short of liquid assets, thus,
increasing peripheral banks’ incentives to hold more liquidity. On the other
hand, r is lower, reducing incentives to hold liquid assets. We have also seen
that the bank at the center of the star increases its liquidity holdings when the
corridor widens, which, due to local substitutability, reduces peripheral banks’
incentives to allocate resources to liquid assets. If one were to fix the weight of
the link to the center, then, for a sufficiently low fixed weight, the widening of
the corridor would result in an increase in peripheral banks’ liquidity holdings
(See Proposition A.1 in the Appendix).

4Formally, we must have n > δ2(ζψ(δ−2η)2(θ(δ(2c̄−δ)2−6ζ(c̄+η))+600ζ(c̄+η))+48(100−θ)c̄κ(c̄−δ+η))
6c̄(100−θ)(ζ2ψ(δ−2η)2(δ2−4η(c̄−δ))+8δ2κ(c̄−δ+η)) .
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Chapter 5. Optimal Width of the Corridor Rate 36

Figure 5.1: Optimal Corridor Width: A Numerical Example.
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Loss Function Equilibrium Link Weight

Notes: Panel (a) presents the loss function L(γ) over the domain [δ, c̄]. The loss function
is multiplied by 104. Panel (b) presents the equilibrium link weight g∗ for each γ ∈ [δ, c̄].
Vertical lines are drawn at γ = γ∗ (Φ, θ).

Instead, if banks can optimally choose the weight of their links, then
liquidity holdings decrease. This follows from the fact that a link becomes
more valuable when the corridor widens since this reduces the probability
that a bank with liquidity needs cannot borrow in the interbank market at
a rate lower than r̄. As a result, a bank in the periphery finds it profitable
to increase the weight of its link to the center, as we can see in Panel (b)
of Figure 5.1. This, in turn, increases its accessible liquidity, which, again,
reduces incentives to hold own liquidity. This additional effect always outweighs
remaining peripheral banks’ incentives to hold more liquidity, if any.

Note that Proposition 5.1 may not hold if banks cannot revise their
linking decisions since for a fixed network the trade-off in narrowing the
corridor may not be present. This, in turn, implies that the central bank
may set the corridor width at a suboptimal level if it does not account for
how links adapt to changes in the corridor. We provide a numerical example
that illustrates this argument. In the example, the corridor width is originally
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Chapter 5. Optimal Width of the Corridor Rate 37

set to its optimal level. We then consider a reduction in the size of interbank
transaction costs c̄. It is shown that a central bank that fails to account for how
banks optimally choose their links when setting the corridor width implements
a suboptimal policy.

Example 3. Assume n = 3, δ = 87, η = 12.55, ψ = 0.9, κ = 4.1172 ∗
10−4, ζ = 0.73, θ = 99.999. Consider first that c̄ = 100 and suppose that the
corridor is originally set to its optimal level, i.e. γ = γ∗ (Φ, θ). The solid curve
in Figure 5.2 corresponds to the loss function when c̄ = 100. We can see that
the loss is minimized at the minimum corridor δ. Given γ = δ, a start network
with links of weight g∗ ≈ 0.04 directed to the center is the unique strict NE
network. In this case, a central bank that does not account for the endogeneity
of g∗ would find it optimal to maintain γ at its minimum size. This follows
from the fact that the link weight is sufficiently low such that total liquidity
holdings would increase if the corridor width increased and the link weight
remained fixed.5 Now suppose that the size of interbank transaction costs, c̄,
reduces to c̄′ = 98.5. Banks in the periphery adjust the weight of their links
to g′∗ ≈ 0.09. The dashed curve in Figure 5.2 corresponds to the loss function
after the change in c̄. We can see that γ∗ (Φ, θ) is now larger than δ. However,
g∗′ is still sufficiently low such that the central bank still (incorrectly) believes
that the widening of the corridor would result in an increase in total liquidity
holdings. Therefore, the corridor width is kept at its minimum size, which is
suboptimal.

5.3
Comparative Statics

We conclude the analysis by providing comparative statics results regard-
ing the optimal corridor width with respect to structural parameters. More
specifically, as in Bindseil and Jabłecki (2011), we focus on changes in the size
of interbank transaction costs, c̄, and liquidity outflows, ζ. As in the previous
section, we consider the restrictions in the linking cost, κ, such that the equi-
librium network is a star network with weighted links directed to the center.
First, we provide conditions such that the optimal corridor width is decreas-
ing in c̄ and increasing in ζ. The fact that the central bank reacts differently
depending on which parameter changes may seem counterintuitive at first.
We show that this result is connected to how changes in interbank transac-
tion costs and liquidity outflows have different implications for how banks in

5In the Appendix, we show that this holds as long as the weight of the directed to the
center is smaller than 4η

c̄ψ (Proposition A.1). In Example 3, 4η
c̄ψ is approximately 0.56.
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Chapter 5. Optimal Width of the Corridor Rate 38

Figure 5.2: Non-optimality of Minimum Corridor After Reduction in c̄.
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Notes: Comparison of the loss function before (left axis) and after (right axis) the change in
c̄. Both functions are multiplied by 104.

the periphery adjust their links to the center. We then provide a numerical
example to illustrate that sufficiently large changes in c̄ and ζ may lead to
non-monotonic changes in the optimal corridor width. This implies that the
central bank should react differently to relatively small and large changes in
the size of interbank transaction costs and liquidity outflows.

We start by presenting Proposition 5.2, which provides comparative stat-
ics results regarding the optimal corridor width. As in the previous section, we
consider values for ζ and c̄ such that, for each corridor width, the equilib-
rium network is a star with weighted links directed to the center. Our results
show that the optimal corridor width is then increasing in the size of liquidity
outflows and decreasing in the size of interbank transaction costs.

Consider a original set of exogenous parameters Φ = {c̄, δ, η, ψ, κ, ζ} and
the corresponding optimal corridor width γ∗ (Φ, θ). When ζ changes to ζ ′,
the new set of exogenous parameters is Φζ′ = {c̄, δ, η, ψ, κ, ζ ′}. Analogously, we
define Φc̄′ as the set of exogenous parameters when c̄ changes to c̄′. We consider
sets Φ, Φζ′ and Φc̄′ such that (5-9) holds, i.e. such that κ0 (δ) > κ > κ1(c̄) (and,
therefore, the unique equilibrium network is a star with weighted links). We
then have the following proposition.

Proposition 5.2. If ζ ′ ≥ ζ, then the optimal corridor width increases, i.e.
γ∗(Φζ′ , θ) ≥ γ∗(Φ, θ). If c̄′ ≤ c̄ and c̄′ is not lower than the original optimal
corridor width, i.e. c̄′ ≥ γ∗(Φ, θ), then the optimal corridor width increases,
i.e. γ∗(Φc̄′ , θ) ≥ γ∗(Φ, θ).

Proposition 5.2 follows mainly from Topkis’s Theorem.6 It shows that the
6Topkis’s Theorem cannot be directly applied to arbitrary changes in c̄, since the
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Chapter 5. Optimal Width of the Corridor Rate 39

optimal corridor width is increasing in ζ and decreasing in c̄. For a decrease in
the size of interbank transaction costs, note that the reduction must be such
that γ∗(Φ, θ) is still a feasible option for the central bank, i.e. γ∗(Φ, θ) ∈ [δ, c̄′].
If this is not the case, then it is straightforward that Proposition 5.2 does not
hold, since γ∗ (Φ, θ) > c̄′ ≥ γ∗ (Φc̄′ , θ).

Let us discuss the intuition for why an increase in the size of liquidity
outflows, ζ, has the opposite effect in the corridor width as an increase in
the size of interbank transaction costs, c̄. For that, we will assume n is large
enough such that total liquidity is increasing in both ζ and c̄. The reason
why Proposition 5.2 holds may not be clear at first since ζ and c̄ affect total
liquidity in the same direction. However, these variables have different effects
on the equilibrium link weight g∗. All else equal, when c̄ increases, links become
less valuable, since it is less likely that they will be used to cover outflows, and,
therefore, g∗ decreases. On the other hand, when ζ is higher, peripheral banks’
incentives to increase g∗ are higher due to the increased risk of being short of
liquid assets, which makes it profitable to access more liquidity through the
interbank market. Now note that liquidity holdings decrease more in response
to an increase in the corridor width when the equilibrium link weight is higher
due to local substitutability. Therefore, a higher g∗ increases central bank’s
incentive to widen the corridor, and vice-versa.

Next, we go back to the set of parameter values of example 2 to provide
a numerical example for Proposition 5.2. Figure 5.3 presents the analysis with
respect to changes in the size of the liquidity outflow.7 Panel (a) shows the
optimal corridor width as a function of ζ when (5-9) holds. By Proposition
5.2, we know that the corridor gets wider for higher values of ζ. Panel (b)
extends the analysis to values of ζ such that (5-9) does not hold. In this
case, we can see that there exists a threshold value ζ̄ ≈ 0.0365, such that for
ζ > ζ̄, the corridor width is no longer increasing in ζ. From Panel (c), which
displays, for each ζ, the corresponding equilibrium link weight g∗, we get an
intuition for this result. Note that for ζ > ζ̄, g∗ equals one and, therefore, the
equilibrium network is a star network with binary links only. Now, when ζ

increases, peripheral banks cannot further increase the weight of the link they
extend to the center and, thus, only adjust their liquidity holdings.

We show in Panel (b) how the existence of such a threshold ζ̄ implies that
the central bank should react differently to relatively small and large changes
in ζ. Suppose we originally have a size of liquidity outflow ζ1 and optimal
corridor width γ∗1 , represented by point 1. For small increases in ζ, such as the

constraint in (5-6) is decreasing in c̄. We show in the appendix how the restriction
c̄′ ≥ γ∗(Φ, θ) circumvents this issue, using the same reasoning as in Topkis’s Theorem.

7For expositional clarity, we have scaled ζ up by 103 in the horizontal axis.
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Chapter 5. Optimal Width of the Corridor Rate 40

Figure 5.3: Comparative Statics: Changes in the Size of Liquidity Outflows.
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Notes: ζ has been scaled up by 103 in the horizontal axis. Panel (a) presents the optimal
corridor width γ∗ (Φ, θ) as a function of ζ, when (5-9) holds. The black dot represents ζ and
γ∗ (Φ, θ) as in example 2. Panel (b) extends the range of ζ to regions such that (5-9) does
not hold. Top and bottom dashed gray lines represent, respectively, c̄ and δ. Points 1, 2 and
3 are different combinations of ζ and γ∗ (Φ, θ). Panel (c) displays the equilibrium link weight
for each value of ζ and corresponding optimal corridor width γ∗ (Φ, θ).

one from point 1 to point 2, we see that the central bank reacts by widening
the corridor. However, when the increase is relatively large, such as the change
from point 1 to point 3, the central bank’s response is to narrow the corridor.

Figure 5.4 displays an analogous analysis with respect to changes in the
size of interbank transaction costs. One difference with respect to the previous
analysis is what drives the existence of a threshold value for c̄ such that for
values below the threshold, the optimal corridor is increasing in c̄. In Panel
(c), we see that is never the case that g∗ equals one. Instead, what happens for
sufficiently low values of c̄ is that the restriction c̄ ≥ γ is binding, as we can
see in Panel (b) by the intersection of γ∗ (Φ, θ) and c̄.

Understanding how the central bank should react to changes in the size
of transaction costs and liquidity outflows can be important during moments
of financial distress, when ζ and c̄ are likely to rise. Our comparative statics
analysis shows that the decision to widen or narrow the corridor depends on
two dimensions: (i) the increase in ζ relative to c̄, since by Proposition 5.2
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Chapter 5. Optimal Width of the Corridor Rate 41

Figure 5.4: Comparative Statics: Changes in the Size of Interbank Transaction
Costs.
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Notes: Panel (a) presents the optimal corridor width γ∗ (Φ, θ) as a function of c̄, when (5-9)
holds and c̄ > γ∗ (Φ, θ) . The black dot represents c̄ and γ∗ (Φ, θ) as in example 2. Panel (b)
extends the range of c̄ to regions such that either (5-9) does not hold or c̄ = γ∗ (Φ, θ). Top
and bottom dashed gray lines represent, respectively, c̄ and δ. Points 1, 2 and 3 are different
combinations of c̄ and γ∗ (Φ, θ). Panel (c) displays the equilibrium link weight for each value
of c̄ and corresponding optimal corridor width γ∗ (Φ, θ).

these two increases can have different implications for how the optimal corridor
width changes, and (ii) the increase in ζ and c̄ relative to their size, given the
non-monotonicity observed in Figures 5.3 and 5.4. The failure to account for
one of these dimensions may lead to suboptimal policy.
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6
Conclusion

In this dissertation, we develop a tractable endogenous network formation
model for the interbank market, where (directed) links are interpreted as
credit lines between banks. Our equilibrium analysis shows that equilibrium
networks display core-periphery type of structures, which is in accordance with
empirically observed networks. Also, banks’ liquidity holdings are characterized
for any given network. Our model unveils a novel trade-off that central
banks operating a corridor system face when choosing the corridor width: a
narrower corridor implies more precise targeting of the interbank rate, which
is important for monetary policy conduction. However, if the network adjusts,
this may result in reduced interbank borrowing and, therefore, excessive
liquidity holding by commercial banks. This incurs an implicit cost since these
funds could be invested in a more productive (illiquid) asset instead.

In this setting, we define a loss function to the central bank, which is a
convex combination between interbank rate volatility and total liquidity held
by banks, and focus on the case when the equilibrium network is a star network
with directed links to the bank at the center of the star. Our results show that,
as long as the number of peripheral banks is not too small, the central bank
does not find it optimal to minimize interbank rate volatility since this implies
a large amount of total liquidity in the banking system. This dissertation,
thus, provides a new rationale for a positive spread between standing facilities
rates, even when the main goal of monetary policy is to control the short-term
interbank rate. We also show how the central bank should optimally react to
changes in the size of interbank transaction costs and liquidity outflows. When
changes are relatively small, the optimal corridor width is decreasing in the
former and increasing in the latter. On the other hand, when changes are large,
the optimal corridor width may change non-monotonically in response.

For future research, it would be interesting to study to which extent
our results extend to equilibrium networks with more than one bank in the
core, as well as to study how changes in the size of the core impact central
bank’s optimal decision regarding the corridor width. One could also introduce
new features to the model, such as heterogeneous preferences and diminishing
marginal returns to investments in the illiquid asset.
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A
Appendix

A.1
Derivation of the value function

When writing the utility in (3-4) we only considered the region where
zi + yi ≤ ζ. If we also consider zi + yi > ζ, then the utility writes:

u(zi,gi) =

ζβzi −
γ
2z

2
i − λziyi + ζλyi − λ

2y
2
i − κ

∑
j∈N gi,j, zi + yi ≤ ζ

µ+ ζβ̄zi − γ̄
2z

2
i − κ

∑
j∈N gi,j, zi + yi > ζ

where β̄ ≡ β − λ , γ̄ ≡ γ − λ , µ ≡ ζ2λ
2 . Note that (γ − β) = rx − r > 0

and (γ − λ) = γ
c̄

(
c̄− γ

2

)
> 0, where the inequality follows from c̄ ≥ r̄− r = γ.

Consider the best response function derived in (3-5). If we add yi to both sides
of the equation we get:

zi + yi = ζβ

γ
+
(

1− λ

γ

)
yi.

For the right-hand side of the above expression to be lower than ζ, yi
must satisfy:

yi ≤
ζ(γ − β)
(γ − λ) .

If yi > ζ(γ−β)
(γ−λ) , then we have:

zi(g, z−i) = ζ max{β̄, 0}
γ̄

. (A-1)

The value function then writes :

V (yi,g) =


(ζβ)2

2γ + ζ(γ−β)λ
γ

yi − (γ−λ)λ
2γ y2

i − κ
∑
j∈N gi,j, yi ≤ ζ(γ−β)

(γ−λ)

µ+ (ζ max{β̄,0})2

2γ̄ − κ∑j∈N gi,j, yi >
ζ(γ−β)
(γ−λ)

Define v(yi) ≡ V (yi,g) − κ
∑
j∈N gi,j. One can easily check that v(.) is

continuous at yi = ζ(γ−β)
(γ−λ) . To show that v(.) is increasing and concave, it is
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Appendix A. Appendix 47

sufficient to show that this holds for yi ∈
[
0, ζ(γ−β)

(γ−λ)

]
since v(.) is constant for

yi >
ζ(γ−β)
(γ−λ) . Taking the derivative with respect to yi ∈

[
0, ζ(γ−β)

(γ−λ)

]
:

v′(yi) = ζ(γ − β)λ
γ

− (γ − λ)λ
γ

yi. (A-2)

It is straightforward that the expression above is strictly decreasing in[
0, ζ(γ−β)

(γ−λ)

]
. To see that (A-2) is also non-negative, it is then sufficient to check

that v′
(
ζ(γ−β)
(γ−λ)

)
= 0 is non-negative.

We argue that the relevant domain for v(.), in terms of network formation
analysis, is

[
0, ζ(γ−β)

(γ−λ)

]
. To see this, take s = (z,g) and assume that for some

i ∈ N , si = (zi,gi) is such that yi > ζ(γ−β)
(γ−λ) . We will show that si = (zi,gi) is

strictly dominated by some strategy profile s′i such that y′i = ζ(γ−β)
(γ−λ) . Consider

a strategy profile s′i = (z′i,g′i) such that y′i = ζ(γ−β)
(γ−λ) and g′i ≤ gi. Because v(.)

is constant for yi ≥ ζ(γ−β)
(γ−λ) , v(yi) = v(y′i). However, the total cost of linking

under s′i is strictly smaller than under si. This implies V (y′i,g′) > V (yi,g).

A.2
Proposition 4.1

If ψ < γ
λ(n−1) and β < λ, then there exists a unique NE in the choice of z and

the unique NE is interior for any given network g.

Proof. First, let us show that, in any NE, zi + yi ≤ ζ , ∀ i ∈ N . Assume to the
contrary that zi + yi > ζ for some i ∈ N . From (A-1) and β < λ, we have
zi = 0 and, therefore, yi > ζ. From (3-5), we can see that, in any NE, zj ≤ ζβ

γ

for every j ∈ N . Hence, yi ≤ ψ(n − 1) ζβ
γ
. From ψ < γ

λ(n−1) , we then get that
yi <

ζβ
λ
< ζ and we have reached a contradiction. It then follows that, in any

Nash equilibrium, (3-5) must hold ∀i ∈ N . Therefore, z must solve:

z = ζβ

γ
1−

(
λψ

γ

)
Gz⇒

[
I +

(
λψ

γ

)
G

]
z = ζβ

γ
1, (A-3)

where 1 is the n-dimensional vector of ones. A unique solution to the above
system of equations exists if and only if

[
I +

(
λψ
γ

)
G
]
is invertible. Let σ(G)

denote G’s spectrum. Then
[
I +

(
λψ
γ

)
G
]−1

is well-defined if and only if:

− γ

λψ
/∈ σ(G). (A-4)

Denote by ρ(G) the spectral radius of G. Then a sufficient condition for (A-4)
is:

ρ(G) < γ

λψ
, (A-5)

which can be rewritten as ψ < γ
λρ(G) . Since G is non-negative, we can apply
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Appendix A. Appendix 48

the Perron-Frobenius Theorem.1 This Theorem provides an upper bound for
the value of ρ(G):

ρ(G) ≤ max
i∈N

∑
j

gi,j.

Since gi,j ≤ 1, ∀i, j ∈ N and gi,i = 0, ∀i ∈ N , we have ρ(G) ≤ n − 1 for any
adjacency matrix G. Hence, ψ < γ

λ(n−1) implies that (A-5) holds for every G.
Thus,

[
I +

(
λψ
γ

)
G
]
is always invertible.

Denote by z∗(G) the solution to (A-3). To show that z∗(G) is interior, define
W = [w1, w2, . . . , wn]′. We want to prove that, for every G, 0 < z∗(G) < W.
We first show that z∗(G) > 0. Start by rewriting (A-3) as:

[I + ωG] z∗(G) = α1,

where α ≡ ζβ
γ
> 0 and ω ≡ λψ

γ
. We have already shown that if ω < 1

n−1 , then
[I + ωG] is invertible for any adjacency matrix G. Inverting [I + ωG] yields:

z∗(G) = α [I + ωG]−1 1.

The matrix [I + ωG]−1 is well-defined and can be written as:

[
I− ωG+ (ωG)2 − (ωG)3 . . .

]
=
∞∑
k=0

[
(ωG)2k − (ωG)2k+1

]
.

We can rewrite the above infinite sum of matrices as:
∞∑
k=0

[
(ωG)2k − (ωG)2k+1

]
=
∞∑
k=0

(ωG)2k (I− ωG) =
[ ∞∑
k=0

(ωG)2k
]

(I− ωG) .

Therefore, z∗(G) is equal to:

α

[ ∞∑
k=0

(ωG)2k
]

(I− ωG) 1.

We have that α > 0. Also,
[∑∞

k=0(ωG)2k
]
is a positive matrix since ωG is

a positive matrix. Therefore, it is sufficient to show that the column matrix
(I− ωG) 1 is a positive matrix. Consider then the element in the i-th row of
(I− ωG) 1. This can be written as:

1− ω
∑
j∈N

gi,j.

This expression is positive for every i ∈ N . To see this note that
1Perron-Frobenius Theorem provides some properties of positive square matrices. We use

the property that if A = (ai,j) is a positive n× n matrix, then ρ(A) ≤ maxi
∑
j ai,j holds.
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Appendix A. Appendix 49

maxi∈N
∑
j gi,j = (n − 1) and recall that ω < 1

n−1 . Therefore, z∗(G) > 0.
Now let us show that z∗(G) < W. Consider again (3-5). By z∗(G) > 0, we
have that, for every i ∈ N and adjacency matrix G:

z∗i = ζβ

γ
−
(
λ

γ

)
ψ
∑
j∈N

gi,jz
∗
j ≤

ζβ

γ
. (A-6)

Note that (γ − β) = (rx − r) > 0, which implies β
γ
< 1. Therefore:

z∗i ≤
ζβ

γ
< ζ < min

j
wj ≤ wi, ∀i.

Hence, z∗(G) < W, which concludes the proof. �

A.3
Proposition 4.2

In any strict NE, s = (z,g), ḡ is a complete core-periphery network. Further-
more, there exists a partition {C(ḡ), P (ḡ)} of N such that:

– All peripheral banks display the same level of liquidity holdings.

– Core banks display higher levels of liquidity holdings than peripheral
banks.

Proof. First, we present five lemmas, which directly imply that any strict NE
network is a complete core-periphery graph.

Lemma 1. In any strict NE, s = (z,g), every bank i ∈ N has at most one link
with weight in (0, 1). Moreover, if gi,k ∈ (0, 1), then bank k holds less liquidity
than every other bank to which i extends a link of weight one, i.e zk < zm, ∀m
such that gi,m = 1.

Proof. For the first part, assume contrary to the above statement that for
some bank i with strategy profile si = (zi,gi) there exist at least two links
with weights in (0, 1). Take two links gi,l and gi,k and assume, without loss of
generality, that zk ≥ zl. Consider the deviation s′i = (zi,g′i), where g′i is defined
as follows: 

g′i,j = gi,j, ∀j ∈ N \ {k, l}

g′i,k = gi,k + ν

g′i,l = gi,l − ν

for some ν > 0 such that g′i,k < 1 and g′i,l > 0. Bank i’s liquidity holding zi is
the same under both strategies. The total cost of linking for agent i is also the
same, since κ∑j∈N g

′
i,j = κ

(∑
j /∈{k,l} gi,j + gi,k + ν + gi,l − ν

)
= κ

∑
j∈N gi,j.

However, agent i’s accessible liquidity is weakly higher under s′i, since y′i =
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Appendix A. Appendix 50

ψ
∑
j∈N g

′
i,jzj = ψ

∑
j∈N gi,jzj + ψν(zk − zl) = yi + ψν(zk − zl) ≥ yi. Therefore,

s′i yields a weakly higher payoff than si, which contradicts the fact that s is a
strict Nash equilibrium. For the second part, assume there exists a bankm such
that gi,m = 1 and zm ≤ zk. Just as in the first part, bank i can weakly increase
its payoff by increasing the weight in the link with bank k to g′i,k = gi,k + ν

and reducing the weight in the link with bank m to g′i,m = gi,m − ν, for some
ν > 0 such that g′i,k < 1 and g′i,m > 0, which again contradicts the fact that s
is a strict Nash equilibrium. �

Lemma 2. In any strict NE, s = (z,g), if gi,l > 0, then gi,k = 1, ∀k : zk ≥ zl.

Proof. Assume contrary to the above statement that gi,k 6= 1 for some k such
that zk ≥ zl. Suppose first that gi,k = 0. If bank i deletes its link with l,
then yi decreases by ψgi,lzl. Moreover, if bank i creates a link with k such
that gi,k = gi,l

zl

zk
> 0, then yi increases by ψgi,kzk = ψgi,l

zl

zk
zk = ψgi,lzl. So

yi is unaltered. But note that gi,k ≤ gi,l since zl ≤ zk. So bank i now has a
weakly smaller total cost of linking. Therefore, there exists a deviation that
weakly increases bank i’s payoff, which contradicts the fact that s is a strict
Nash equilibrium. Now suppose that gi,k ∈ (0, 1). If gi,l ∈ (0, 1), by Lemma
1, we have reached a contradiction since bank i cannot extend more than one
weighted link. If gi,l = 1, again by Lemma 1, we reach a contradiction, since
zk ≥ zl. �

Lemma 3. In any strict NE, s = (z,g), if ḡi,l = 0, then si = sl.

Proof. Take i and l ∈ N such that ḡi,l = 0 and assume contrary to the above
statement that si 6= sl. Without loss of generality, assume u (si) ≥ u (sl). Since
i does not connect to l (i.e. gi,l = 0), a possible deviation for l is s′l =si, which is
weakly profitable for bank l. This contradicts the fact that s is a strict NE. �

Lemma 4. In any strict NE, s = (z,g), if ḡi,l > 0 and zi ≤ zl, then gi,l > 0.

Proof. Take i and l ∈ N such that ḡi,l > 0 and zi ≤ zl. Note that, by (3-5), zi ≤
zl implies yi ≥ yl. Assume contrary to the above statement that gi,l = 0. Then
it must be that gl,i > 0. By Lemma 2, we have gl,m = 1,∀m : zm ≥ zi,m 6= l.
We then have:

yl = ψ
∑
j∈N

gl,jzj ≥ ψ

gl,izi +
∑

{j 6=l | zj>zi}
zj

 . (A-7)

Also, by Lemma 2, we have gi,m = 0,∀m : zm ≤ zl, which implies:

yi = ψ
∑
j∈N

gi,jzj ≤ ψ
∑

{j | zj>zl}
zj. (A-8)

Since zi ≤ zl, {j | zj > zl} ⊆ {j 6= l | zj > zi}, which yields:
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∑
{j 6=l | zj>zi}

zj ≥
∑

{j | zj>zl}
zj. (A-9)

From (A-7), (A-8) and (A-9), we have:

yi ≤ ψ
∑

{j | zj>zl}
zj < ψ

gl,izi +
∑

{j 6=l | zj>zi}
zj

 ≤ yl.

Thus, yi < yl and we have reached a contradiction. �

Lemma 5. In any strict NE, s = (z,g), if gi,l > 0 for i and l such that zi ≤ zl,
then gk,l ≥ gi,l, ∀ k ∈ N \ {l}.

Proof. Assume contrary to the above statement that gi,l > gk,l for some
i and k, with zi ≤ zl. We will show that it is profitable for agent k to
increase the weight of the link it extends to l from gk,l to gi,l. Note that
gk,l < 1. By Lemma 2, we must have gk,m = 0,∀m : zm ≤ zl. Define the
set Z̄l = {j ∈ N |j 6= k and zj > zl} as the set of banks different from k that
hold strictly more liquidity than l (note that i /∈ Z̄l). We then have:

yk = ψ
∑
j∈N

gk,jzj ≤ ψgk,lzl + ψ
∑
j∈Z̄l

zj. (A-10)

Also, by Lemma 2, we have gi,m = 1,∀m : zm ≥ zl,m 6= i. This yields:

yi = ψ
∑
j∈N

gi,jzj ≥ ψgi,lzl + ψ
∑
j∈Z̄l

zj. (A-11)

Adding ψgi,lzl to both sides of (A-10) we obtain:

yk − ψgk,lzl + ψgi,lzl ≤ ψgi,lzl + ψ
∑
j∈Z̄l

zj ≤ yi. (A-12)

For gi,l > gk,l to be part of a strict NE it must be that bank i does not find it
profitable to change the weight of its link to l from gi,l to gk,l, which implies:

v(yi)− v(yi − ψgi,lzl + ψgk,lzl) > κ(gi,l − gk,l). (A-13)

From the concavity of v(.) and (A-12) it follows that:

v(yk−ψgk,lzl +ψgi,lzl)− v(yk) ≥ v(yi)− v(yi−ψgi,lzl +ψgk,lzl) > κ(gi,l− gk,l).

Hence, bank k finds it profitable to increase the weight of the link it
extends to l to gi,l. We have reached a contradiction. �

Define the set of i’s neighbors in ḡ as Ni(ḡ) = {j ∈ N |ḡi,j 6= 0}. To
show that ḡ is a complete core-periphery graph, it is sufficient to show that
∀k ∈ C(ḡ), Nk(ḡ) = N \ {k} and ∀i ∈ P (ḡ), Ni(ḡ) = C(ḡ).
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Let us start by defining z = min{z1, . . . , zn} as the lowest amount
of liquidity that is held by some bank in equilibrium. Also, define the set
Z = {i ∈ N | zi = z} as the set of banks that have liquidity holdings equal to
z. Note that Z is non-empty. We then consider two different cases.

First, assume that for some i and j ∈ Z, gi,j > 0. By Lemma 2,
gi,l > 0, ∀ l ∈ N \ {i}, which implies Ni(ḡ) = N \ {i}. Now take k ∈ N \ {i}.
Note that bank i holds weakly less liquidity than k and i extends a link to k.
By Lemma 5, every other bank in the network also extends a link to k. Hence,
Nk(ḡ) = N \ {k}. To show that ḡ is a complete core-periphery graph, define
C(ḡ) = N and P (ḡ) = ∅.

Second, assume that for all i and j ∈ Z, gi,j = 0. Set P (ḡ) = Z and
C(ḡ) = N \ Z. If Z = N , then ḡ is the empty network, which is a complete
core-periphery graph. Otherwise, note that, by construction, ∀ i ∈ P (ḡ) and
k ∈ C(ḡ), si 6= sk. By Lemma 3, ḡi,k > 0. Therefore, Ni(ḡ) = C(ḡ) , ∀i ∈ P (ḡ).
Now since zi < zk, by Lemma 4, gi,k > 0. By Lemma 5, Nk(ḡ) = N \{k}, ∀ k ∈
C(ḡ). Hence, ḡ is a complete core-periphery graph.

To conclude the proof, note that by construction, all banks in P (ḡ) hold
the same amount of liquidity, which is strictly smaller than that of banks in
C(ḡ). �

A.4
Proposition 4.3

If β < β̂, then for any linking cost κ ∈ R+ there exists a strict NE, s = (z,g).
If β < λ, then there exists κ such that a strict NE, s = (z,g), exists and the
equilibrium network g is non empty, i.e. g 6= 0.

Proof. First, recall our assumptions r̄ > rx > r and c̄ > r̄ − r, which imply
β < γ and λ < γ. Define K ⊆ R+ as the set of linking costs κ such that
a strict NE exists We start by demonstrating that K is non-empty. Define
ze = ζβ

γ
and κe ≡ v′(0)ψze = ζ2βλψ(γ−β)

γ2 > 0. The following lemma shows that
κe is a linking threshold such that for higher values of the linking cost κ there
exists a strict NE such that the equilibrium network is empty.

Lemma 6. For all κ ≥ κe, there exists a strict NE, s = (z,g), with g = 0.
Therefore, if κ ≥ κe, then κ ∈ K.

Proof. Consider the empty network (i.e. g = 0). In this case, yi = 0, ∀i ∈ N .
From (3-5), we can then see that in equilibrium every bank must hold the same
level of liquidity, ze. For the empty network to be an equilibrium, no bank can
weakly increase its payoff by extending a link to another bank, which yields
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the following condition:
v′(0)ψze ≤ κ.

Therefore, if κ ∈ [κe,∞), there exists a strict NE, s = (z,0), which concludes
the proof. �

Define the non-empty set K1 = [κe,∞). By Lemma 6, K1 ⊆ K, which
implies that K is non-empty.

Moreover, define zs ≡ ze and κ̄ ≡ v′ (ψzs)ψzs. We provide a condition
such that for κ ∈ (κ̄, κe) there exists a strict NE in which g 6= 0.

Lemma 7. If β < λ, then κ ∈ (κ̄, κe) if and only if there exists a strict
NE, s = (z,g), in which g is a star network with at least one weighted link.
Therefore, if κ ∈ (κ̄, κe), then κ ∈ K.

Proof. Consider the star network with at least one weighted link. The bank
at the center of the star is the unique core bank and, therefore, does not
extend any link. Hence, zs is the liquidity holding of the center. At least one
peripheral bank extends a weighted link g ∈ (0, 1) to the center. By Lemma
3, all remaining peripheral banks also extend a link of weight g to the center.
From (3-5), the liquidity holding of a peripheral bank is zp(g) ≡ ζβ

γ
− λ

γ
ψgzs =

zs
(
1− λ

γ
ψg
)
. The liquidity peripheral banks access through the network is

yp(g) = ψgzs, while the center does not access any liquidity. From the strict
concavity of v(.), if a peripheral bank extends a link of weight g to the center,
then g must satisfy:

v′(yp(g))ψzs = κ⇔ κ = ζ2βλψ (γ2 − β(γ + gψ(γ − λ)))
γ3 ≡ κ(g). (A-14)

For the star with weighted links equal to g to be an equilibrium, the center
cannot find it weakly profitable to extend a link to a bank in the periphery.
Therefore:

v′(0)ψzp(g) ≤ κ(g). (A-15)
We can see that (A-15) holds for any g ∈ (0, 1). as long as λ > β :

κ(g)− v′(0)ψzp(g) = ζ2gβλ(λ− β)ψ2

γ2 > 0,∀g ∈ (0, 1)

Hence, κ = κ(g) for some g ∈ (0, 1) if and only if there exists a strict NE
such that g is the star with weighted links equal to g. Now we can see from
(A-14) that κ(g) is strictly decreasing in g. Note that κ(1) = κ̄ and κ(0) = κe.
Therefore, κ ∈ (κ̄, κe) if and only if κ = κ(g) for some g ∈ (0, 1), which
concludes the proof. �

Define K2 = (κ̄, κe) . If β < λ, then by Lemma 7, K2 ⊆ K. Therefore,
for any κ ∈ K2, there exists a strict NE, s = (z,g), with g 6= 0.
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For the remainder of the proof, assume β < β̂ ≡ γλ2ψ(γ+λψ)
2γ2(γ−λ)+γλ2ψ+λ3ψ2 .

One can show by algebraic manipulation that β̂ < λ. Note then, that this
assumption implies β < λ. Let us present one more lemma that, together with
lemmas 6 and 7, directly implies that a strict NE exists for any non-negative
κ and, therefore, K = R+.

Lemma 8. For every κ ∈ [0, κ̄] there exists nC ∈ {1, . . . , n} and a strict NE
s = (z,g) such that g is a complete core-periphery graph with nC banks in the
core and no weighted links (i.e. gi,j ∈ {0, 1},∀i, j ∈ N). Therefore, if κ ∈ [0, κ̄],
then κ ∈ K.

Proof. In any non-empty equilibrium network with no weighted links, gi,j =
gj,i = 1 for every i, j ∈ C(ḡ). Let us consider first nC ∈ {1, . . . , n− 1}. Define
zC(nC) as the the level of liquidity that every core bank holds in an equilibrium
with nC core banks and no weighted links. We can explicitly solve for zC(nC)
in (3-5):

zC(nC) = ζβ

γ
−
(
λ

γ

)
ψ(nC − 1)zC(nC)⇒ zC(nC) = ζβ

γ + (nC − 1)λψ . (A-16)

The liquidity holdings of a peripheral bank as function of nC , zP (nC), can be
written as:

zP (nC) = ζβ

γ
−
(
λ

γ

)
ψnCzC(nC)⇒ zP (nC) = zC(nC)

(
1− λψ

γ

)
. (A-17)

Let yC(nC) = ψ(nC − 1)zC(nC) and yP (nC) = ψnCzC(nC) be the liquidity
accessed through the network by a core and peripheral bank, respectively, and
note that yP > yC .

For every nC , each bank extends a link to every core bank. Because core
banks hold more liquidity than peripheral banks and the value function v(.) is
increasing, the only relevant deviations for each bank i is to either create links
to peripheral banks, which increases both yi and the total cost of linking, or
reduce the weight of the existing links with the core, which decreases yi and
the total cost of linking. If for every agent these two deviations are not weakly
profitable, then so is every other possible deviation. Consider first creating
links to peripheral banks. Since v(.) is strictly concave, the marginal benefit
of an increase in yi is higher if i is a core bank than if it is a peripheral bank,
given that yP > yC . Therefore, we only need to check that the marginal benefit
of creating a link for a core bank is not higher than the marginal cost, which
yields the following condition:

v′(yC(nC))ψzP (nC) ≤ κ. (A-18)
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Consider now a bank reducing the weights of the existing links with the core.
From the strict concavity of v(.), we have that the marginal loss of a decrease
in yi is lower if i belongs to the periphery. Hence, we need the marginal loss of
reducing a link for a peripheral bank to be higher than the marginal reduction
in cost:

v′(yP (nC))ψzC(nC) ≥ κ. (A-19)
Define v′(yC(nC))ψzP (nC) ≡ κ(nC) and v′(yP (nC))ψzC(nC) ≡ κ̄(nC). Since
v(.) is strictly increasing and in equilibrium every bank i chooses a positive zi,
we have κ̄(nC) > 0 and κ(nC) > 0, ∀nC . Replacing (A-2) and (A-16), these
expressions are given by:

κ̄(nC) = ζ2βλψ(γ(γ + (nC − 1)λψ)− β(γ + γnCψ − λψ))
γ(γ + (nC − 1)λψ)2

κ(nC) = ζ2βλψ(γ − λψ)(γ − β + (nC − 1)(λ− β)ψ)
γ(γ + (nC − 1)λψ)2 (A-20)

It is clear from (A-18) and (A-19) that, for a complete core-periphery graph
with nC banks in the core and no weighted links to be part of a strict NE for
some κ > 0, we need κ̄(nC) ≥ κ(nC). We can check from (A-20) that this is
indeed the case:

κ̄(nC)− κ(nC) = ζ2βλψ2(λ− β)
γ(γ + (nC − 1)λψ) > 0.

Define K(nC) = [κ(nC), κ̄(nC)]. If κ ∈
n−1⋃
nC=1

K(nC), then there exists a

nC ∈ {1, . . . , n − 1} and a strict NE s = (z,g) such that g is a complete
core-periphery graph with nC banks in the core and no weighted links. Next,
we show the existence of κ such that [κ, κ̄] =

n−1⋃
nC=1

K(nC). First, we state that

κ(nC) and κ̄(nC) are both decreasing in nC . To see this, note that (A-16)
implies zC(nC) is decreasing in nC . From (A-17), we see that this in turn
implies zP (nC) is decreasing in nC . Since zC(nC) and zP (nC) decrease with
nC , it follows from the best response function that yC(nC) and yP (nC) are
both increasing in nC . Because v(.) is concave, v′(yC(nC)) and v′(yP (nC)) are
also decreasing in nC . Hence, v′(yC(nC))ψzP (nC) and v′(yP (nC))ψzC(nC) are
both decreasing in nC . Now set κ = κ(n − 1) and note that κ̄(1) = κ̄. It is
straightforward that

n−1⋃
nC=1

K(nC) ⊆ [κ, κ̄]. For the converse to hold, a sufficient
condition is:

K(nC)
⋂
K(nC − 1) 6= ∅,∀nC ∈ {2, . . . , n− 1}. (A-21)

i.e. adjacent intervals overlap. Since κ(.) and κ̄(.) are decreasing functions, we
can state condition (A-21) as:
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κ̄(nC) ≥ κ(nC − 1),∀nC ∈ {2, . . . , n− 1}. (A-22)

To see that this condition is sufficient, take any κ ∈ [κ, κ̄]. If κ > κ(1), then
κ ∈ K(1)⇒ κ ∈

n−1⋃
nC=1

K(nC). Otherwise, there exists n′C ∈ {2, . . . , n− 1} such

that κ(n′C) ≤ κ ≤ κ(n′C − 1). From (A-22), κ̄(n′C) ≥ κ(n′C − 1). Therefore,
κ ∈ K(n′C)⇒ κ ∈

n−1⋃
nC=1

K(nC).

Replace (A-20) in (A-22). We can then isolate β such that (A-22) holds
if and only if:

β ≤ B(nC), ∀nC , (A-23)

where:

B(nC) ≡ λ2ψ(nC−1)(γ+(nC−2)λψ)(γ+(nC−1)λψ)
2γ3+γ2λ(3(nC−2)ψ−2)+λ3ψ2(2nC−3+(nC−2)(nC−1)2ψ)+γλ2ψ(5−2nC+(nC−2)(2nC−3)ψ)

One can check by taking the derivative with respect to nC that B(nC) is
strictly increasing in nC . Therefore, (A-23) is satisfied ∀nC ∈ {2, . . . , n − 1},
as long as it holds for nC = 2. This yields the following condition for β:

β ≤ γλ2ψ(γ + λψ)
2γ2(γ − λ) + γλ2ψ + λ3ψ2 (A-24)

(A-24) holds by assumption and, therefore, [κ, κ̄] ⊆
n−1⋃
nC=1

K(nC).

Furthermore, consider the case when nC = n. Denote by zc ≡ zC(n)
the level of liquidity that every bank holds in the complete network and by
yc = ψ(n− 1)zc the liquidity each bank accesses through the network. In the
complete network, we only need to check that a bank does not find it weakly
profitable to reduce the weight of the links it extends to other banks. From
the strict concavity of v(.), this is true as long as the marginal loss of reducing
a link is weakly higher than the marginal reduction in cost:

v′(yc)ψzc ≥ κ.

Set κc ≡ v′(yc)ψzc = ζ2βλψ(γ−β+(n−1)(λ−β)ψ)
(γ+(n−1)λψ)2 . Since γ > λ > β, we can see

that κc is strictly positive. Next, we show that κ < κc. Recall that we have
shown κ̄(nC)− κ(nC − 1) ≥ 0, ∀nC ∈ {2, . . . , n− 1}. Note that this holds for
any nC ≥ 2. Of course, κ̄(.) and κ(.) only have a meaningful interpretation if
nC ∈ {2, . . . , n − 1}. But we can set nC = n and κ̄(n) − κ(n − 1) ≥ 0 still
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holds. We then have:

κc − κ = κc − κ(n− 1) = (κc − κ̄(n)) + (κ̄(n)− κ(n− 1)) ≥

κc − κ̄(n) = (ζβψ)2λ(γ − λ)
γ(γ + (n− 1)λψ)2 > 0

Hence, [0, κc] ∪ [κ, κ̄] = [0, κ̄], which concludes the proof. �

In order to prove that K = R+, note first that K ⊆ R+ by definition.
Next, define K3 = [0, κ̄]. By Lemma 8, K3 ⊆ K. Recall that, by lemmas 6 and
7,K1 = [κe,∞) andK2 = (κ̄, κe) are also contained inK. Hence, ⋃3

i=1Ki ⊆ K.
Lastly, note that ⋃3

i=1Ki = R+, which concludes the proof. �

A.5
Proposition 4.4

Assume β < λ. Then a strict NE s = (z,g) exists for some g ∈ gs if and only
if κ ∈ (κ1, κ0). Moreover:

– All peripheral banks extend a weighted link to the center and the weight
is the same across banks.

– The equilibrium link weight g∗ ∈ (0, 1) satisfies κ = v′ (ψg∗zs)ψzs, where
zs = ζβ

γ
is the liquidity holding of the center.

– s is the unique strict NE.

Proof. Note that κ0 ≡ v′(0)ψzs = κe and κ1 ≡ v′ (ψzs)ψzs = κ̄. Then it
follows directly from Lemma 7 that s = (z,g) is a strict NE for some g ∈ gs

if and only if κ ∈ (κ1, κ0). The fact that peripheral banks extend links with
equal weights to the center follows directly from Lemma 3. Now, to obtain the
condition in g∗, consider the value function of a peripheral bank when g ∈ gs:

V (yi,g) = v (ψgzs)− κg (A-25)
Take the derivative of (A-25) with respect to g and set it equal to zero. This
yields the following condition:

v′ (ψg∗zs)ψzs = κ. (A-26)

To show that s is unique, assume to the contrary that there exists s’ = (z′,g′) 6=
s such that s’ is also a strict NE. Let us consider three different cases which
cover all possible cases. First, assume g′ is the star network with weighted links
equal to g′ ∈ [0, g∗). Note that if g′ = 0, then g′ is the empty network. From
(A-25), we must have:

v′ (ψg′zs)ψzs ≤ κ.
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From the strict concavity of v(.) and g′ < g∗ it follows that v′ (ψg∗zs)ψzs <
v′ (ψg′zs)ψzs ≤ κ, which contradicts (A-26). Next, assume g′ is the star
network with weighted links equal to g′ ∈ (g∗, 1]. Note that if g′ = 1, then
g′ is the star network with binary links only. From (A-25), we must have:

v′ (ψg′zs)ψzs ≥ κ.

From the strict concavity of v(.) and g′ > g∗ it follows that v′ (ψg∗zs)ψzs >
v′ (ψg′zs)ψzs ≥ κ, which contradicts (A-26).

Lastly, assume g′ is a complete core-periphery graph with at least two
banks in the core. Then, there exists i ∈ N such that i extends at least two
links. By Lemma 1, at least one of these links has weight one. Take player j
such that gi,j = 1. By (3-5), zj ≤ zs. For gi,j = 1 to be part of a strict NE, it
must be that:

v′(yi)ψzj ≥ κ.

From the strict concavity of v(.), we then have v′(ψzj)ψzj > v′(yi)ψzj ≥ κ. If
v′(ψzj)ψzj is increasing in zj, then we have a contradiction. To see this, note
that this implies v′ (ψzs)ψzs > κ, which contradicts (A-26). Let us then show
that v′(ψzj)ψzj is indeed increasing in zj. We start by substituting v′(.) for
(A-2) in v′(ψzj)ψzj to obtain:

λψzj(ζ(γ − β)− ψzj(γ − λ))
γ

. (A-27)

Differentiating (A-27) with respect to zj then yields:

λψ(ζ(γ − β)− 2ψzj(γ − λ))
γ

. (A-28)

It is sufficient to check that the above expression is positive for all zj ∈ [0, zs].
Note that (A-28) is strictly decreasing in zj since γ > λ. Hence, it is sufficient
to check that (A-28) is positive for zj = zs. Replace zj for zs in (A-28). We
then have:

ζλψ (γ2 − β(γ + 2γψ − 2λψ))
γ2 .

One can show by algebraic manipulation that the above expression is strictly
positive given β < λ and γ > 2λ = γ2

c̄
.2 �

2The calculations were executed in Mathematica and are available from the author.
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A.6
Proposition 5.1

For each θ, there exists a n̄ ∈ R such that, for all n > n̄, the loss function,
L(γ), is decreasing in the size of the corridor at γ = δ. Moreover, the optimal
corridor width, γ∗ (Φ, θ), is then strictly larger than the minimum corridor
width, δ.

Proof. Recall that Φ is such that κ0 (δ) > κ > κ1(c̄) holds. We begin by
deriving the functional form of Z(γ) ≡ ∑n

i=1 zi (γ,Φ) when g ∈ gs. Recall
λ ≡ γ2

2c̄ and condition (5-5), i.e. β = γ
2 −η. The liquidity holding of the bank at

the center of the star is zs = ζ
(

1
2 −

η
γ

)
. Moreover, there are n − 1 peripheral

banks that access ψg∗zs of liquidity. Therefore, the liquidity holding of a bank
in the periphery is zp ≡ ζ

(
1
2 −

η
γ

) (
1− γψg∗

2c̄

)
. By Proposition 4.4, g∗ solves

v′ (ψg∗zs)ψzs = κ. Solving for g∗, we obtain:

g∗ = 2c̄(ζ2ψ(γ2 − 4η2)− 8c̄κ)
ζ2ψ2(2c̄− γ)(γ − 2η)2 . (A-29)

Condition κ0 (δ) > κ > κ1(c̄) guarantees that g∗ ∈ (0, 1), ∀ γ ∈ [δ, c̄]. Replacing
(A-29) in zp, we get:

zp = ζ

(
1
2 −

η

γ

)(
1− γ(ζ2ψ(γ2 − 4η2)− 8c̄κ)

ζ2ψ(2c̄− γ)(γ − 2η)2

)
.

Z(γ) then writes:

Z(γ) = zs + (n− 1)zp = ζ

(
1
2 −

η

γ

)(
n− (n− 1)γ(ζ2ψ(γ2 − 4η2)− 8c̄κ)

ζ2ψ(2c̄− γ)(γ − 2η)2

)
.

From (5-2) we have the functional form of the interbank rate variance γ2

12 . We
then obtain the functional form of the loss function:

L(γ) =

θ
γ2

12 + (100− θ)ζ
(

1
2 −

η

γ

)(
n− (n− 1)γ(ζ2ψ(γ2 − 4η2)− 8c̄κ)

ζ2ψ(2c̄− γ)(γ − 2η)2

)
. (A-30)

Taking the derivative of L(γ), evaluating at γ = δ and collecting terms with
respect to n yields:

L′(δ) = A2 (Φ, θ)− A1 (Φ, θ)n,
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where the expressions for A1 (Φ, θ) and A2 (Φ, θ) are given by:

A1 (Φ, θ) ≡ c̄(100− θ) (ζ2ψ(δ − 2η)2 (δ2 − 4η(c̄− δ)) + 8δ2κ(c̄− δ + η))
δ2ζψ(2c̄− δ)2(δ − 2η)2

A2 (Φ, θ) ≡
θ (δ(2c̄− δ)2 − 6ζ(c̄+ η)) + 600ζ(c̄+ η) + 48(100−θ)c̄κ(c̄−δ+η)

ζψ(δ−2η)2

6(2c̄− δ)2

To show the existence of n̄ such that L′(δ) < 0, it is sufficient to show that
A1 (Φ, θ) > 0, ∀Φ, θ. From the functional form of A1 (Φ, θ), it is sufficient to
check that δ2 − 4η(c̄ − δ) > 0 ⇔ δ2 > 4η(c̄ − δ). This, in turn, holds due to
the condition that

√
c̄2+4ηc̄−4η2

2 < δ ⇔ δ2 > c̄2+4ηc̄−4η2

2 . To see this, let us show
that

(
c̄2+4ηc̄−4η2

2

)
> 4η(c̄ − δ). Start by subtracting 4η(c̄ − δ) from both sides

of the inequality:(
c̄2 + 4ηc̄− 4η2

2

)
− 4η(c̄− δ) = 1

2
(
c̄2 − 4η2 − 4η(c̄− 2δ)

)
> 0,

where the last inequality holds since c̄ > δ > 2η > 0. Define n̄ ≡ A2(Φ,θ)
A1(Φ,θ) .

If n > n̄, we have L′(δ) < 0. Since L(γ) is continuously differentiable, there
exists γ′ > δ such that L′(γ) < 0, ∀ γ ∈ [δ, γ′). Hence, for some γ̃ ∈ (δ, γ′),
L(γ̃) < L(δ), which implies γ∗ (Φ, θ) > δ. �

A.7
Proposition 5.2

If ζ ′ ≥ ζ, then the optimal corridor width increases, i.e. γ∗(Φζ′ , θ) ≥ γ∗(Φ, θ).
If c̄′ ≤ c̄ and c̄′ is not lower than the original optimal corridor width, i.e. c̄′ ≥
γ∗(Φ, θ), then the optimal corridor width increases, i.e. γ∗(Φc̄′ , θ) ≥ γ∗(Φ, θ).

Proof. Note first that the constraint γ ∈ [δ, c̄] does not depend on ζ. Therefore,
to show the first result it is sufficient to check that L(.) has decreasing
differences in (γ, ζ) (Topkis’s Theorem). Starting from (A-30), which presents
the functional form of L(γ) when κ0 (δ) > κ > κ1(c̄) , we can see that L(γ) is
twice continuously differentiable with respect to γ, ζ. Therefore, it is sufficient
to check that ∂2L

∂γ ∂ζ
≤ 0. Taking the cross derivative with respect to γ, ζ yields:

(100− θ) (4nc̄2η − 4nγc̄η − γ2(c̄(n− 1)− η))
γ2(2c̄− γ)2 . (A-31)

One can show by algebraic manipulation that (A-31) is negative given κ0 (δ) >
κ > κ1(c̄).3

Moreover, to show the second result, consider first the constraint in (5-
6), γ ∈ [δ, c̄]. The set [δ, c̄] is not increasing in c̄. Therefore, even if L(.) has

3The calculations were executed in Mathematica and are available from the author.
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Appendix A. Appendix 61

increasing differences in (γ, c̄), we cannot state that γ∗ (Φ, θ) will increase
for arbitrary decreases in c̄. Let us then consider decreases in c̄ such that
c̄ ≥ c̄′ ≥ γ∗(Φ, θ). We write the loss function as L(γ, c̄) to make it explicit that
it depends on c̄. By definition, γ∗(Φc̄′ , θ) = argminγ{L(γ, c̄′) | c̄′ ≥ γ ≥ δ} and
γ∗(Φ, θ) = argminγ{L(γ, c̄) | c̄ ≥ γ ≥ δ}. Since c̄′ ≥ γ∗(Φ, θ), we have that
γ∗(Φ, θ) = argminγ{L(γ, c̄) | c̄′ ≥ γ ≥ δ}. Notice then that we do not need
to consider the impact that the reduction in c̄ has in the constraint of (5-6)
when comparing γ∗(Φ, θ) to γ∗(Φc̄′ , θ). Therefore, for changes in c̄ such that
c̄ ≥ c̄′ ≥ γ∗(Φ, θ), it is sufficient to check that L(.) has increasing differences in
(γ, c̄). To show this, it is sufficient that ∂2L

∂γ ∂c̄
≥ 0. Taking the cross derivative

with respect to γ, c̄ yields:

(100− θ)(n− 1) (ζ2ψ(γ − 2η)2(γ + 2c̄+ 4η) + 8ηκ(γ + 2c̄)− 8γ2κ)
ζψ(γ − 2η)2(2c̄− γ)3 . (A-32)

One can show by algebraic manipulation that (A-32) is positive given κ0 (δ) >
κ > κ1(c̄).4 �

A.8
Proposition A.1

Proposition A.1. Define Ẑ(γ, g) and γ̂∗ (Φ, θ, g), respectively, as total liquid-
ity holdings and the solution to (5-6) when the equilibrium network g is a star
with fixed links of weight g. If g < 4η

c̄ψ
, then Ẑ(γ, g) is strictly increasing in γ.

Therefore, γ̂∗ (Φ, θ, g) = δ, ∀Φ, θ.

Proof. We begin by deriving the functional form of Ẑ(γ, g). The liquidity
holding of the bank at the center of the star is ẑs = ζ

(
1
2 −

η
γ

)
. Moreover,

there are n − 1 peripheral banks that access ψgẑs of liquidity. Therefore, the
liquidity holding of a bank in the periphery is ẑp ≡ ζ

(
1
2 −

η
γ

) (
1− γψg

2c̄

)
, where

g is fixed. We can see that ẑs is strictly increasing in γ. Let us show that this
is also the case for ẑp. Taking the derivative of ẑp with respect to γ yields:

ζη

γ2 −
gζψ

4c̄ .

For the expression above to be strictly positive for all γ ∈ [δ, c̄], it is sufficient
to check it for γ = c̄, which yields the condition:

g <
4η
c̄ψ
.

4The calculations were executed in Mathematica and are available from the author.
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Hence, if g < 4η
c̄ψ
, then ẑp is strictly increasing in γ. This in turn implies

that Ẑ(γ, g) is also strictly increasing in γ. It is then straightforward that the
solution that minimizes L̂(γ) = θ γ

2

12 + (100− θ)Ẑ(γ, g) is γ̂∗ (Φ, θ, g) = δ since
L̂′(γ) > 0,∀γ ∈ [δ, c̄].

�
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