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Abstract

Many efforts are made by economists to track key macroeconomic variables
in real time. This paper aims to make a contribution to economic forecasting
research by employing Machine Learning techniques to perform a daily now-
casting of Brazilian inflation. The original results obtained are encouraging.
The benefit of making a daily nowcast of inflation instead of one-month-ahead
forecast is found to be of 50%-60% on average for almost all ML models con-
sidered. The best-performing ML techniques are Complete Subset Regression
and Random Forest. The results also show that using ML methods instead of
univariate benchmarks reduces the nowcasting error in at most 20%.

Keywords: inflation nowcasting, Machine Learning, Complete Subset Re-
gressions.



Resumo

A importancia de monitoramento das principais varidveis macroecondémicas é
evidenciada pelo grande esfor¢o que os agentes devotam a esta tarefa. O pre-
sente trabalho propoe-se a contribuir para a literatura de previsao econémica,
aplicando os modelos de aprendizado de maquina para monitorar diariamente
a inflagao brasileira medida pelo IPCA. Os resultados obtidos sao promissores.
O beneficio de fazer monitoramento diario da inflagao em vez da previsao uma
vez por més é na ordem de 50%-60% em média para quase todos os modelos de
aprendizado de maquina considerados. Os modelos que apresentam o melhor
desempenho sao Regressao de Subconjunto Completo e Floresta Aleatéria. Os
resultados também mostram que usar técnicas multivariadas de aprendizado
de maquina em vez de simples modelos univariados reduz o erro da previsao
em até 20%.

Palavras-chave: monitoramento da inflacao, Aprendizado de Maquina, Re-
gressao de Subconjunto Completo.
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1 Introduction

Inflation — defined as an increase in the general price level — is one of the most central
macroeconomic phenomena that affects an economy pervasively. In 1980’s and the beginning
of 1990’s years, Brazil experienced hyperinflation process, which has been overcome since 1994;
nevertheless, inflation in Brazil always remains under close attention of market agents.

Meanwhile, in the first two decades of the XXI century the applied research in economic
science has been enriched with two innovations: the emergence of big data — extremely large
data sets — and computer machines capable of processing this data. Hence, economists have
more and more frequently resorted to machine learning techniques. Machine learning (ML) is
generally defined as a science (and art) of pattern recognition from a given dataset. Supervised®
machine learning is beneficial for prediction (Varian (2014), Mullainathan and Spiess(2017)).
An important prediction task faced by macroeconomists is a nowcasting of key economic vari-
ables.

Nowcasting is the prediction of the present, the near future and the recent past (Banbura
et al., 2013). This definition highlights the fact that economic statistics are published with some
delay after the reference period: for example, Brazilian Broad Consumer Price Index (IPCA)
of a month is usually released on the eighth working day of the subsequent month. However,
market participants and policy makers need to monitor the economy in real time (every day)
to make correct decisions. The monetary authority depends on accurate inflation nowcast to
formulate adequate responses in order to reach the inflation target (in Brazil, the target in
2020 is 4%, with tolerance band of + 1,5 percentage point), as well as to anchor expectations?.
Firms and consumers are also interested in nowcasting inflation, since almost all the contracts
in the economy are established in nominal terms. For Brazilian Financial Market participants,
inflation nowcasting is important for asset pricing. In fact, asset prices are affected daily by
releases of new data on macroeconomic series when this data brings some surprise to the market
(Flannery and Protopapadakis, 2002). In Brazil, inflation exhibits high short-term volatility,
which makes financial institutions allocate significant efforts to nowcast inflation (Garcia et al.,
2017). As there is a delay in publication of the relevant data, nowcasting attempts to predict
this data using already available series.

According to Stock and Watson (2017), during the last two decades the researchers in
the field of Econometrics have made efforts to elaborate scientific methods of forecasting. A
scientific method is the one that is transparent, replicable, capable of quantifying uncertainty,
has well-defined properties and can have its performance evaluated out of sample. Thus, the
aim of this research program has been to develop reliable algorithms of prediction in order to

reduce a degree of subjectivity and "expert judgment", that forecasting used to rely on.

Machine learning methods can be classified into three groups: 1) supervised learning, when the goal is, given
the set of predictors (features), predict the value of dependent (target) variables: e.g., regression, classification
and class probability estimation, causal modeling; 2) unsupervised learning, when the answers are not given or
even do not exist, and the goal is to recognize data patterns: e.g., clustering analysis, co-occurrence grouping,
profiling and dimensionality reduction (such as Principal Component Analysis, PCA); 3) reinforcement learn-
ing, which aims to iteratively search for input variables that optimize some reward function: e.g., dynamic
programming techniques.

2Medeiros et al. (2019) mention high welfare costs arising from Central Banks’ errors in forecasting inflation.



The present paper aims to make a contribution to this research program. This paper has
3 main objectives: 1) to compare, according to defined criteria, the performance of different
Machine Learning and Econometric methods in nowcasting Brazilian inflation; 2) to measure
the benefits of working with high-frequency (daily) data instead of forecasting the inflation
once a month; 3) to assess which features have the greatest impact on the update of the target
variable. The target in this paper is the Brazilian Broad Consumer Price Index (IPCA) — a
monthly inflation index calculated by Brazilian Institute of Geography and Statistics (IBGE).
This index is the most important one among other inflation indexes that exist in Brazil, not
only due to being the reference in many contracts but also because it is used by the Central
Bank of Brazil (BCB) in inflation targeting.

The literature on economic nowcasting is recent (XXI century), but some of its statistical
techniques date back to the XX century. The statistical problem that permeates all this research
is the following: in the face of a large number of potential predictors in the data (sometimes even
larger than number of observations), it is necessary to reduce the number of predictors. The idea
that the most part of behavior of a large set of variables can be explained by few variables which
govern the whole dataset is quite old. For instance, Principal Component Analysis (PCA) was
first developed by Pearson (1901) and Hotelling (1933). Closely related to it, the Factor Model
has been extensively used in macroeconomic research, since Sargent and Sims (1977) showed
that a great part of variance of important macroeconomic variables, such as GDP, prices and
unemployment, could be explained by 2 dynamic factors. Stock and Watson (2011) remark 3
generations of Dynamic Factor Model (DFM): 1) estimation of the Gaussian likelihood via the
Kalman Filter (Engle and Watson (1981,1983), Stock and Watson (1989), Sargent (1989), and
Quah and Sargent (1993)); 2) nonparametric averaging methods (Chamberlain and Rothschild
(1983), Stock and Watson (2002a, 2002b), Forni et al. (2009)); 3) hybrid principal components
and state space methods, implemented in Giannone et al. (2008), Giannone et al. (2004) and
discussed in Doz et al. (2011). In the former paper, the term "nowcasting" was introduced to
the economics, and two-step estimation of DFM was applied. To improve the Factor Model,
Bai and Ng (2008) proposed Targeted Factor Model (TFM). Meanwhile, Machine Learning
methods were also being developed to deal with high dimensionality of data: Support Vector
Machines (SVM) ( Cortes and Vapnik (1995)), Least Absolute Shrinkage and Selection Operator
(LASSO) (Tibshirani (1996)), adaptive LASSO (adaLASSO) (Zou (2006)), Elastic Net (ElNet)
(Zou and Hastie 2005), adaptive Elastic Net (adaElNet), Ridge Regression (RR) (Hoerl and
Kennard (1970)), Bayesian VAR (BVAR) (Banbura et al. (2010)), Bagging (Breiman (2008)),
Factor Boosting (Bai and Ng (2008)), Complete Subset Regressions (CSR) (Elliott et al. (2013,
2015)), Jackknife Model Averaging (JMA) (Hansen and Racine (2012); Zhang et al. (2013)),
and Random Forests (RF) (Breiman (2001)).

Above mentioned techniques have been used to forecast several economic variables, such
as GDP (Giannone et al. (2008), Banbura et al. (2013), Richardson et al. (2018)), inflation
(Modugno (2013), Chakraborty and Joseph (2017)), commodities prices (Xie et al. (2006)),
stock prices (Huang et al. (2005)) and exchange rates (Colombo and Pelagatti (2019)). As
to Brazilian inflation forecasting, Arruda et al. (2011) employed ARMA, VAR, TAR (Thresh-

old Autoregressive) and Phillips Curve models and showed that AR models deliver smaller



forecasting errors than Phillips Curve models; later, Medeiros and Vasconcelos (2016) consid-
ered some high-dimensional ML models (LASSO, Bagging, TFM and CSR) to conclude that
high-dimensional models have, on average, smaller forecasting errors than autoregressive and
factor models. Also, Medeiros and Vasconcelos (2016) compared performance of AR, Factor
Model, LASSO and adaLASSO to forecast Brazilian inflation indexes IPCA and IGP-M with
high-dimensional data and found that LASSO performs better? for shorter forecasting horizons,
but for longer ones AR model is still better. Further, Garcia et al. (2017) contributed to this
literature by considering real-time forecasting (i.e., each forecast is computed using only the
information that was available to the forecaster at the point of time when he made this fore-
cast) and by using AR, Random Walk (RW) and Unobserved Components Stochastic Volatility
(UCSV) models as benchmarks to assess the performance of LASSO, adaLLASSO (and its flex
version), post-OLS, TFM, CSR, RF and combination of professional forecasts® (based on the
model confidence sets) in forecasting Brazilian inflation index IPCA. The data they used refers
to the period from January 2003 to December 2015 and consists of 156 observations on 59
macroeconomic variables and 34 variables linked to specialist forecasts. They found that, for
the shortest horizon (5 days ahead), LASSO and FOCUS perform better; for 1 month and
5 days ahead horizon, adalLASSO is the best model; for further forecasting horizons, CSR is
superior to other models. Moreover, the average of the models included in the confidence set
was found to be the best model.

More recently, Medeiros et al. (2019) assessed the performance of ML methods in real-time
forecasting of U.S. inflation. Their paper, in comparison with Garcia et al. (2017), employs
more ML models (10 ML models, 3 Factor Models, 3 benchmark models and 3 combinations of
forecasts), has richer database (monthly observations from January 1960 till December 2015,
total of 672 observations, and 122 variables) and discusses in more details the variable selection.
The best performing model was found to be the RF. According to the authors, this success can
be due to possible nonlinearities between inflation and its predictors; also, can be due to the
RF’s variable selection mechanism. Moreover, Medeiros et al. (2019) point out that the gains
of using ML techniques to forecast inflation can achieve 30% in terms of Mean Squared Error
(MSE).

The present paper aims to make a contribution to this discussion by assessing the above
mentioned models in a real-time nowcasting exercise. The prediction is made for the current
month and is updated daily using new data that emerges in the information set. This paper

uses larger database than Garcia et al. (2017) and considers the models studied in Medeiros et

3The metric to evaluate the quality of performance of a model is: the smaller is forecast error (for instance,
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) or Median Absolute Deviation from the
median (MAD)) the better is forecasting power of the model.

4In Brazil, professional forecasts on variables such as GDP, IPCA, Exchange Rate, Interest Rate SELIC
etc are collected by the Central Bank of Brazil via on-line system, and the medians of these forecasts are
published every Monday in form of a report called FOCUS (thus, henceforth in this paper, professional forecast
data in Brazil will be referred to as FOCUS). According to the Central Bank of Brazil, approximately 140
financial institutions (and non-financial ones) — such as banks, asset management companies, brokerage firms
and consulting companies — are actually registered in this system. These market agents can update their
forecasts at any time, but many of them update on Fridays. In order to encourage market agents to update
their forecasts, the Central Bank also publishes Top5 ranking of the most accurate forecasters to promote their
businesses.



al. (2019), but applies them to Brazilian economy in order to search for the best performing
model(s) and to quantify the benefits of daily nowcasting. The innovation is the following:
while Garcia et al. (2017) makes forecasting of Brazilian inflation, issuing the prediction (for
the current month’s and 11 subsequent months’ inflation) once a month (5 days before the
release of IPCA), this work makes nowcast of this variable, issuing the prediction of the current
month’s inflation every day. Thus, it makes possible to assess if the usage of high frequency
data improves the accuracy of the forecast.

Following this Introduction, the paper is organized as follows. Section 2 describes the
Dataset. Section 3 reports the Methodology used in this study. Section 4 implements the
Kalman Filter to balance the Dataset. Section 5 presents, succinctly, all the Models used.

Section 6 discusses the Results obtained. Section 7 concludes.

2 Data

This research deals with supervised learning: there is a target variable (IPCA inflation
rate), and the task is to nowcast this variable. Given this task, the researcher proceeds to
feature engineering, that is, selection of features that make this task be well performed by ML
algorithms. The features must be informative about the target, i.e., must reduce the uncertainty
about the IPCA rate. The dataset used in this research is the object-feature matrix which has
174 macroeconomic time series as columns (features) and 2974 observations, from 01/12/2006
t0 03/10/2018, as rows (objects). The choice of time window is due to the availability of the four
Monitors data. The dataset is detailed in Table A in Appendix. The data has mixed frequency:
there are daily, weekly and, mostly, monthly series. The criteria for including a feature in the
dataset were its possible relatedness to inflation process (according to Economic Theory) and
availability of the data for the relevant time window. The dataset describes the behavior of the
economy as a whole and contains the most important economic series in its respective sector:
(I) Prices; (II) Money and Finance; (III) Production ans Sales; (IV) External Sector; (V)
Public Sector; (VI) Labor, Employment and Income; and (VII) Expectations. The innovation
of this paper is the inclusion of four Monitors for Brazilian inflation in the dataset. These
Inflation Monitors have daily frequency, are produced by the FGV and are used by Brazilian
Financial Market institutions as a proxy for the current month’s inflation rate. The inclusion of
these features is supposed to improve the nowcast (relatively to other researches) because these
features are the nearest to the target variable among all other available features up to now.
For the purpose of implementation of the Models of Section 5, the dataset was augmented by
4 principal components computed from the original dataset, as well as encompassed 4 lags for
each variable, following Medeiros et al. (2019). Thus, the Models in Section 5 were applied to
the dataset with 174 x 4 + 16 = 712 variables and 2974 observations. The rest of this Section
provides the description of the Monitors.

Monitor IPCA is time series with daily frequency produced by FGV that simulates the
IPCA inflation rate of the last 30 days. This Monitor (like the three others) uses the collection
of prices made by the FGV for calculation of the IPC (Consumer Price Index) inflation index
but applies the official IBGE weighting. Unlike the official IPCA index, which has one collection

4



of prices for each calculation period, the IPC collection occurs continuously, so the mean of the
collected prices is calculated and compared to the analogous mean in the previous period. The
geographic coverage of the collection of prices encompasses the cities comprising most of the
weight (more than 90%) in the IPCA; for cities not covered, there is monitoring of administered
prices. The collection calendar is similar to that used for the IPCA by IBGE. Each month, the
collection period of IPCA ends approximately on the 27th day; hence, the 27th day Monitor
data is the best proxy to the inflation rate that will be published by IBGE on the 8th day of
subsequent month. The weights are updated in two stages. The first stage takes place in the
last day of the IBGE collection, according to the official calendar, and uses the relative prices
collected by FGV. The second stage occurs when the IPCA index is published by IBGE, so
that the variations of subitems’ prices become known.

Differently from the Monitor IPCA, the Monitor IPCA Ponta is not based on comparison
of the means, but on direct comparison of the prices collected in the last 7 days with the same
period of the previous month. Hence, the Ponta result that best anticipates the current month’s
inflation rate is each month’s 7th day result. Also, the Ponta has the capacity of anticipating
the upper bound of the current month’s inflation.

Monitor IPCA-15 is the analogous Monitor for the IPCA-15 inflation index. This index uses
the same prices collected for the IPCA, but the calculation period is different: it encompasses
from 15th day of a month till 14th day of the subsequent month and is published by IBGE
approximately on the 22th day of each month. It is worth noting that, until the publication
of the official IPCA-15 inflation index, the Monitor is the best variable to nowcast the current
month’s inflation. When published, the IPCA-15 is a good indicator of what can be the current
month’s IPCA inflation rate, because this index has already covered the first half of the month.

Monitor IPCA-15 Ponta is the analogous Ponta version for the IPCA-15.

3 Methodology

After collection of the time series data of the features, the next steps of the research
are data preparation and data cleaning. The goal of data preparation step of this work is to
construct a balanced panel where all the variables (the target and features) have daily frequency.
This interpolation of monthly and weekly series to daily frequency is accomplished using the
Kalman Filter in Section 4. As for the data cleaning, the calendar was created, eliminating
all the weekends and national holidays, then some observations were deleted (for example, the
Monitors have some data on weekends) and some missing data in daily series were inferred
(for example, if a daily series has data in dates ¢ and ¢ + 2, the data in ¢ 4+ 1 was filled in as
a simple arithmetic mean between them). Moreover, although the ML methods are powerful,
some of them require specific data format, such as the series be stationary. All the series were
also standardized to have the same scale (it is needed by Factor and Shrinkage Models). To
test stationarity, the augmented Dickey—Fuller test (ADF) was used. Table A in the Appendix
shows which of the following transformations was applied to each series: (0) no transformation;
(1) Az (2) A%; (3) logrs (4) Alogei; (5) Allogas; (6) Allogas (7) A — 1),

Tg—1




The next step of the research is the modeling itself, that is, using the Database, the goal
is to create Models that, given new data on the features, are capable of nowcasting the value
of the target so that the error of the nowcast is as small as possible. This is the learning
stage: the machine is learning the correct answers that were given, in the past, to the following
question: "Given those feature values, what was the IPCA inflation rate in that date?" to be
able to answer it in the present when there is no known answer. The whole dataset is divided in
two parts: the learning sample (from 01,/12/2006 to 08/10/2014), which has 1974 observations
(approximately two thirds of the whole sample) and on which the learning is performed, and
the testing sample (from 09/10/2014 to 03/10/2018), which has 1000 observations.

The next step is testing (assessment) stage, which is performed over the testing sample.

The assessment of models’ performance here is different from that of Medeiros et al. (2019)
in the following sense: For every ML technique, Medeiros et al. (2019) run 12 models, cor-
responding to each forecasting horizon (in months) h = 1,2,...,12, so they present 12 RMSE
(MAE) results for each technique. Here, this can not be performed because the exercise is not
forecasting, but is nowcasting, which implies that, during the month, the researcher does not
observe the IPCA rate, so can not compare the predicted value with the realized value online,
as it is made in Medeiros et al. (2019), where, in each line, the researcher observes the IPCA
rate (since the database is monthly). For example, on 17/08/2016, the researcher nowcasts the
value for the month inflation rate, but to assess the performance of the model, this number can
only be compared to the official IPCA rate published on 08/09/2016. Therefore, in this work
the following procedure was adopted: firstly, it was verified that each month in Testing Sample
has, on average, 21 days. Then, for every ML technique, 20 models were run, corresponding
to each forecasting horizon (in days) h = 1,2,...,20. The Testing Sample has 1000 daily ob-
servations, each one indexed by t = 1,2,...,1000. From this sequence of indexes, define the
subsequence t; = 21,42,63, ...,966,987; hence j = 1,2,...,47. Evidently, on each day indexed
by t;, the true IPCA rate becomes publicly known, and there is no need to nowcast it on that
day. Hence, to assess the nowcasting performance of the ML techniques, the following quality

functionals are defined:

20 47

. 1 .
RMSE(§ns,,y;) = 910 SN G, — 1)) (1)
h=1 j=1
and | 20 a7
MAE(Gn.t;,y;) = 910 Z Z Ynt; — Vi, (2)
h=1 j=1

where 7+, is the prediction of the IPCA rate made h days ago for the date t;, and y is the
official IPCA rate published on the day j (note that every month the publishing date is different,
but it is possible to affirm that, on average, the publishing day is j). Thus, differently from
Medeiros et al. (2019), in the present work each ML technique is assessed not by a vector
of 12 errors, but by an integer that represent the mean error of 20 models corresponding to
forecasting horizons h = 1, 2, ..., 20.

Following Medeiros et al. (2019), the nowcasting exercise performed in this paper also uses



the rolling window technique. Its main advantage is that it smoothes the effects of possible
structure breaks and outliers in the series. The rolling windows have fixed size m within each
model, but it differs across the models, because it depends on the forecasting horizon A and on

the lag p of the model:

m(h,p) =1974 —h —p—1,

where 1974 is the size of the Learning Sample. Hence, the number of subsamples in the rolling
window scheme is given by N = 2974 — m(h,p) + 1.

Computer codes used in Section 4 were written in Python 3.7, Anaconda distribution. The
codes used in Section 5 for implementation of ML methods, are in R language and use the same

packages and functions as Medeiros et al. (2019)°.

4 Kalman Filter

For the sake of exposition, inflation x is thought of as an object moving in two-dimensional
space: one dimension is the [IPCA rate and the other is the IPCA-15 rate. It moves continuously,
nevertheless the economist observes its position in R? only once a month, when the IBGE
publishes the official statistics. However, the economist wants to track the moving of this
object every day (nowcast it). To do this job, he receives every day a signal — the Inflation
Monitor® — that shows approximately where the target object is, but this Monitor data has
a lot of noise. The Kalman Filter (KF)” is an unsupervised algorithm that helps to reduce
this uncertainty about where the inflation is now (it filters noisy data). Below follows the
explanation of how the KF works and how it was used in this research to make the target

variable and the monthly or weekly features all be of daily frequency.

Step 1. Initial belief (prior)

Suppose, without loss of generality, that today is 09/01/2012. The economist does not
know what are the IPCA and IPCA-15 rates today (the true location of z in R?), but he
must form some belief about it. Three days ago (in 06/01/2012), the IBGE published the
official IPCA rate of December/2011: it was 0,50%. Another official data that he knows is
the IPCA-15 rate of December/2011, published in 21/12/2011 by the IBGE: it was 0,56%.
So this economist’s initial guess Z( is that today the inflation must be in some region nearby
0,50
0,56
(linear) KF algorithm is that = has Normal probability density (in our case, bivariate). Denote

the point 2y = ( ) € R2. The Figure 1 illustrates it. The assumption of the classical

p = N(Zo, %) as the prior for z, where the initial guess for the covariance matrix let be
0,4 0,3

o3 045 | The colored areas in Figure 1 show probability levels of the object being

0

®See https://github.com/gabrielrvsc

6More generally, the signal may be n-dimensional, where n is number of daily features.

"For this topic, the references are Harvey(1989) and Hamilton(1994). For the sake of succinct exposition of
the KF, the material from https://python.quantecon.org/kalman.html was consulted.
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located in that area, e.g., 0,48 = [, p(z)dz is the probability of the inflation being in the

central (Maroon) ellipse.

20

15

10

05

0.0

-1.0
-1.0

Figure 1: Prior density of the random variable x.

Step 2. Filtering

Now suppose that the economist received new information: today’s inflation Monitor

data, which is noisy but delivers a signal of where the inflation can be today. Denote y =
( Monitor IPCA 0,44

Monitor IPCA-15 0,49
depicted in Figure 1. But this observed sensor is imprecise, so it is assumed that

). In 09/01/2012, the economist observed y = ( > This point is

yr = Cxy + dy + ¢ [Observation Equation] (3)

where C'is 2 X 2 observation matrix, d; is observation offset (by default, set it to zero) and

¢t ~ N(0, R) is independent of z, where (R) is called observation covariance matrix and is
2x2

positive definite. For now, assume that C' is identity matrix and R = 0,5 - ¥.
Kalman Filter is a bayesian method: it uses the new information y to update the prior

p(z) according to the Bayes’ Rule:

plyr)p\r P\Y|T)p\x
el PO plylenla)
p(y) [ p(ylr)p(x)da
By (3), p(y|lz) = N(Cz, R). Using the formulas for marginal and conditional distributions of
Gaussian variables (Bishop(2006), p.93) and also the Woodbury matrix identity
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(A+UCV) ' =A - A U (CH+VATU) VAT

the solution is p(z|y) = N (27, %), where

0,46
' =30+ 20T (CEOT + R) My — Cg) = ( o’ . ) (4)
and
0,13 0,1
=%y, CT(CE,CT +R)IC8y = | ’ . 5
0~ X0 (%o ) 0 0,1 0,15 (5)

Equation (4) tells that the new position # is the initial guess 2y corrected by the news
y — Cg weighted by the matrix ¥oCT(CXoCT + R)~t. Equation (5) tells that new information
y must reduce the uncertainty by the amount of ¥,CT(CL CT + R)"1CYy. In fact, this can
be observed in Figure 2, where the filtering distribution p(z|y) is depicted. The contour lines
of the prior distribution appear in black, while those of the new density are colored. Note that
the uncertainty (the areas of ellipses) reduced significantly, and the mean shifted towards the
point y indicated by the Monitor.

-0.2 00 0z 04 06 08 10 12

Figure 2: Filtering distribution p(x|y).
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Figure 3: Predictive distribution pyeq(z).

Step 3. Forecasting

Now suppose that the economist’s next aim is to predict where the inflation will be to-
morrow (or suppose that tomorrow the sensor data will be missing, and it will be necessary to
nowcast inflation having only the data up to today). For that, it is needed to make assumption

about the dynamics of the true inflation process x:

Ti1 = Axy + by + 441 [State Equation], (6)

where A) is transition matrix, b; is transition offset (by default, set it to zero) and e;11 ~
2X2

N(0, Q) is independent of x, where @ is called transition covariance matrix. For now, assume
(2x2)
1,2 0 . .
that A = 0 0.9 and @ = 0,3 - Y,. Jointly, equations (3) and (6) form the so-called
state-space model, that has wide usage in forecasting.
Hence, now, given the filtering distribution p(z|y) and the law of motion (6), the task is

to calculate predictive distribution p,.q(z) of the location of inflation tomorrow. Substituting

random vector z¥ ~ N (2", 3F) in (6), it comes out that (Az" + &) ~ N(Zpred, Lprea) because

it is linear combination of two Normal variables. Moreover,

10



Tprea = B[AzY 4 ¢] = AR2" = Agy + AX CT(CECF 4+ R) ™y — Cdg) = AZg + Kx(y — Ciy)
B ( 0,55 )
S\ -0,1 )’

where Ky, := AY CT(CYoCT + R)™! is called Kalman Gain; and

Yprea i= V[AzF +¢] = AV[zF]AT + Q = AXpAT — ASCT(CZoCT + R) 'S0 AT + Q

0,31 0,066 >

= AV AT — K+ O AT + :(
0 S @ 0,066 0,14

The predictive density ppred(r) = N(Zpreds Lpred) is depicted in Figure 3 in colors, in comparison

with prior and filtering distributions.

Implementation

To obtain the target and feature variables in daily frequency, the above described Steps
1, 2 and 3 were implemented in pykalman® package in Python. As seen above, the main
advantage of this KF is that it does not require any labeled training data neither demands
any previous transformations of data (such as making it stationary etc); on the other hand,
it has the computational cost of O(T'd?), where T is total number of time steps and d is the
dimension of the state space, and is not able to handle non-gaussian noise, according to the
documentation of the package.

To interpolate monthly? variables to daily frequency via KF, this research used the follow-

ing state-space framework!?: observation equation is

Ty
Ti—1
U = Ct ) (7)
(1x1) (1x24)
Tr—22
Uy
(24x1)
where y; is the interpoland series,
o [1/23 1/23 ... 1/23 0], t=23,46,69,...,T
e [0 0 ... 0 O], otherwise

8See https://pykalman.github.io/

9For weekly variables, all the reasoning is analogous to that presented below, but the ragged edge gap between
two releases of observation series becomes 5 days instead of 23.

0For references, see Bernanke et al. (1997) and Ménch & Uhlig (2005). Issler & Notini (2016) apply this
technique to nowcast Brazilian GDP.
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and transition equation is

Lt+1 ¢ 00 00 p T A T+1
Xy 1 00 0 00 Ty 0 0
T 010 0 00 Ti_o 0 0
Tpy = Ti_o =1 001 0 00 Ty | + 0 + 0 . (8)
Ti-_21 000 ... 10 Ti—22 0 0
€41 000 ... 000p €t 0 N1
(24x1) (24x24) (24x1) (24x1) (24x1)

where 2z, is a vector of k feature series with daily frequency that are used as covariates to
(1xk)

increase the accuracy of the filter, [ is a vector of weights for these covariates, and
(kx1)

Nie1 ~ N(0,0%), with o = 999999.

Equations (7)-(8) incorporate two main specifications to the framework (3) and (6):

(i) The transition equation error is generalized to allow for autoregressive structure:
€t = PEi—1 + Ni;

(ii) The transition matrix C'is specified in such a way that the following sum restriction must

be satisfied:

”y % S22 w, t=23,46,69,...,T

0, otherwise.
Thinking of y, as IPCA inflation rate, this restriction imposes that the state inflation z;
that the Kalman algorithm generates every day during the month must be such that the
mean of these states is exactly equal to the the official IPCA inflation rate that IBGE will
publish relatively to that month. Thinking of y; as any other monthly variable from the
dataset, the reasoning is analogous. In order to respect this restriction, Kalman Smoother
is implemented, because it estimates the states in a batch, while Kalman Filter performs
only online estimation. As empirical results of Issler and Notini (2016) show, the use of
this restriction in the in-sample period leads to better performance out-of-sample. Hence,
Kalman Smoother is used to generate states in the Learning Sample and Kalman Filter
is used in the Testing Sample.
Moreover, any month can have at most 23 working days, hence, to perform the interpo-
lation exercise, the new calendar is created: additional days (holidays or weekends) are
added to the months in the original dataset calendar that had less than 23 days. After
obtaining the interpolation result, these additional observations are excluded, and the
calendar is back to its original form.
When implementing the system (7)-(8) in pykalman, the values of y, for ¢ # 23,46, 69,
..., T are mussing and the goal is to fill this ragged edge; to accomplish that, these cells
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must be masked, so that the algorithm considers them as missing and makes prediction
(Step 3 of the explanation above) using the state equation for all t # 23,46,69, ..., T.

As pointed out above, the KF assumes that the model parameters 0 = (&, 3, C,d, R, A, b, Q)
are previously estimated and can be specified by hand. These parameters define a probabilis-
tic model from which the unobserved states and observed measurements are assumed to be
sampled from. There are some possibilities concerning specification of 6.

The first possibility is to not specify € at all (in this case, the code uses sensible default
values: zeros for all 1-dimensional arrays and identity matrices for all 2-dimensional arrays)
and use the Expected Maximization algorithm to learn € while running the Kalman Filter
or Smoother (as can be seen from Table 1, algorithms with EM perform better). The EM
algorithm is implemented as follows (Hastie et al. (2001)):

e the algorithm starts with the initial guess for é(o);

e cxpectation step j: compute E[KO(O,T)]Y,é(j)], where £ is log-likelihood function, T =

(Y,X), Y are observed variables and X are unobserved ones;
e mazimization step j+1: find 09+ € argmaz Eg[ly(0, T)[Y,09)];
e iterate two previous steps until convergence.

To avoid overfitting, number of iterations is set to 5. By Jensen’s inequality, each new iteration
never decreases the log-likelihood of the observed data; however, this is a nonconvex optimiza-
tion problem, so when the algorithm converges, nothing guarantees that it converges to the
global (and not only local) extremum.

The second possibility is to specify 6 according to (7)-(8) and to learn ¢, 5 and p on the
learning sample and then use these estimations to run the filter on the testing sample. It is
worth reiterating that the sum restriction is not satisfied on the Testing Sample; however, using
this restriction on the Learning Sample not only improves the quality of interpolation there, but
also helps to estimate more accurately parameters that will be used to interpolate the Testing
Sample.

To initialize the values of ¢, 5 and p in the algorithm, the daily and weekly features in 2z

are aggregated to monthly frequency, and the following regressions are run'!:

(1—@L)y = 2,8 + ey,
€ = PEt—1 + M,

(9)

where y; are monthly observed series. After that, the estimated values of these parameters are
initialized in the Kalman Smoother algorithm, and then the Expected Maximization mechanism
optimizes them at each iteration step t.

After interpolation of Learning Sample, it is necessary to specify 6 for Kalman Filter that
will be run on Testing Sample. To initialize 6, the interpolated Learning Sample is used to

search for the optimal values of ¢ and p. For example, the following algorithm was used for

HUsing SARIMAX class of package statsmodels (see https://www.statsmodels.org/) in Python.
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this purpose on the IPCA target series: Fix p = 0 and create a grid in the interval [—2; 2], with
121 potential values for ¢. Run a KS loop 121 times and then choose ¢, such that

¢« = argmin RSE = argmin Z (T — my)?, (10)

¢ ¢ t=27/12,/2006,
29/01,/2007,

29/09/2014

and
¢, = argmin AE = argmin Z |7 — my, (11)

¢ ¢ 4—27/12/2006,
29/01,/2007,

20/09/2014

where RSE and AE are Root Squared Error and Absolute Error, respectively, m, is official
IPCA rate published by IBGE, and m; is the daily state inflation calculated by the KS. When
the optimal ¢ according to RSE criterion is different from the optimal ¢ according to AE, take
the mean of these ¢’s. As can be seen from the indexes of summation, it is considered that
the best KS result is that is the "nearest" to the true IPCA inflation rate. Since the collection
period of IPCA ends approximately on the 27th day of each month, hence the KS result on
that day that produces the least error when compared to the true IPCA rate for that month is
considered the one where ¢ is optimal. After that, fixing the optimal ¢, introduce autoregressive
observation error to the model and search for the optimal p analogously. The interval for the
grid was chosen to be [—2;2] because numbers out of this interval produce infinite errors. The
initial value of [ was that estimated by (9). The initial state means & were set equal to the
last observed value of the interpoland variable, both in the Learning Sample Smoother and in
the Testing Sample Filter.

Instead of interpolating the IPCA inflation rate using this method with sum restriction,
the researcher could only use the Monitor IPCA (without applying any filter to it) as state
inflation; he could also apply Kalman Smoother to Learning Sample and Kalman Filter to
Testing Sample of several Monitors and daily covariates, without using the sum restriction or
autoregressive error, but using the default parameters for #. Table 1 shows the errors produced
by these different alternatives and the conclusion is that using the sum restriction reduces the
RSE (AE) in 13% (46%) in comparison with using the Monitor IPCA as daily state inflation
rate and reduces the RSE (AE) in 36% (46%) in comparison with smoothing and filtering
all the Monitors and another 14 daily covariates without the use of the sum restriction. The
errors presented are total errors, that are calculated summing the error on the learning sample
produced by the smoother and the error on the testing sample produced by the filter. The
model applied in the last line of the Table 1 employs 18-dimensional (all the Monitors + 14
daily covariates) Kalman Smoother with the sum restriction (using the loop described above,
the optimal values for parameters ¢ and p were found to be ¢, = 0,4 and p, = 0) with
EM in the Learning Sample and the 18-dimensional Kalman Filter with EM in the Testing
Sample. As shows the graph in Figure 4, the interpolated to daily frequency IPCA inflation
rate accompanies well the official monthly IPCA rate. As expected, the nowcasting error of

daily interpolated series is higher in the Testing Sample than in the Learning Sample.
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Table 1: Root Squared Errors and Absolute Errors of the Monitor, Filtered /Smoothed Monitors

and KF/KS model with sum restriction.

Time series RSE (AE)
Monitor IPCA 1,03 (10,09)
1-dimensional KF (Monitor IPCA) without EM 1,45 (10,15)
1-dimensional KS/KF (Monitor IPCA) with EM 1,44 (10,10)
2-dimensional KS/KF (Monitor IPCA and Monitor IPCA-15) without EM 1,45 (10,15)
2-dimensional KS/KF (Monitor IPCA and Monitor IPCA-15) with EM 1,44 (10,02)
2-dimensional KS/KF (Monitor IPCA and Monitor IPCA Ponta) without EM | 1,45 (10,15)
2-dimensional KS/KF (Monitor IPCA and Monitor IPCA Ponta) with EM 1,44 (10,05)
4-dimensional KS/KF (all the Monitors) without EM 1,45 (10,15)
4-dimensional KS/KF (all the Monitors) with EM 1,44 (10,04)
18-dimensional KS/KF (all the Monitors + 14 daily covariates) without EM | 1,45 (10,15)
18-dimensional KS/KF (all the Monitors + 14 daily covariates) with EM 1,44 (10,04)
18-dimensional KS/KF with sum restriction with EM 0,9 (5,45)
== Maonthly IPCA inflation rate
150 = |PCA rate interpolated to daily frequency
125 illl l
100 J | | Irl\
\ , ‘ ]
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Figure 4: Monthly IPCA inflation rate and IPCA rate interpolated to daily frequency using

Kalman Smoother and Filter.
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5 Models

The present work considers 2 Benchmark models, 3 Factor models, 5 Shrinkage methods,
4 Averaging (Ensemble) methods and 2 Hybrid models. This Section makes an exposition of
these Models'?, following Medeiros et al. (2019).

5.1 Benchmarks
5.1.1 Random Walk (RW)

Let m; denote IPCA monthly inflation rate at date ¢, and h = 1, .., 20 be forecasting horizon

(in days). RW model resembles the adaptive expectations theory in economics:

My = M1 + €, (12)

where {¢;} #id (0,0?). The model in (12) is without drift. Hence, inflation forecast h periods

ahead is

%t-i-h = Et(ﬂ—t—‘,-h) = T¢. (13)

5.1.2 Autoregressive model (AR)

Another univariate benchmark model is Autoregressive Model (AR) with lag p and h

prediction horizons:

Tt = Po,n T QLaTi—1 + P2 Ti—2 + ... + QppTi—p + €, (14)
where E(e) = 0, V() = 02 V t and E(ee,) = 0 for ¢ # 7. The lag p is defined using the

Bayesian Information Criterion (BIC) and the parameters are estimated by Ordinary Least

Squares. Thus, the forecast h periods ahead is
Tirh = Qop + P14+ - oo + OpaTi—pii1- (15)

5.2 Factor Models
5.2.1 Dynamic Factor Model with Principal Component Analysis

Dynamic Factor Model (DFM) is an important unsupervised technique of dimensional-
ity reduction. In macroeconometrics, researchers frequently deal with object-feature matrices
where T" < N, that is, the number of features N is far greater than the number of time se-
ries observations 7. Implementing DFM, a great part of variation of these observed variables
can be summarized in the dynamics of a small number of unobserved (latent) common fac-

tors. Differently from Shrinkage methods, the Factor Models do not discard uninformative

12A model (or algorithm) is a function a : X — Y, that for every object X; returns the predicted target
(Nx1)

variable value 7y yp,.
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features; indeed, they condense all the features in a joint parsimonious structure that has good
asymptotic properties.
Dynamic Factor Model can be written in two equivalent forms: the dynamic form, where

the vector of observed features X; depends on the lags of factors explicitly, and the static
(Nx1)
form, where this dynamics is implicit (Stock and Watson (2016)). The two forms are exposed

below. The lag operator notation is used: a(L) := Y ;o a;L’, and so a(L) Xy = >0 a; Xy
Dynamic form of DFM:

Xt :)\(L) ft + (&3

(Nx1) (Nxq)(gx1) (Nx1)

fo =V(L)fior+

(gx1) (gxq) (gx1)  (gx1)

(16)

where ¢ < N, the polynomial matrix A(L) is referred to as matrix of factor loadings and \;(L) f
is called common component of the ith series, i = 1,2,..., N. Also, n; is zero-mean serially
uncorrelated vector of innovations to the factors, and it is assumed that Ee;n, , = 0 Vk €
Z. Moreover, the (zero-mean) idiosyncratic disturbances vector e; is generally assumed to be

serially correlated according to

€t = 5(L)6t—1 + Ut, (17)

where vy is serially uncorrelated.

Letting p be the degree of lag polynomial matrix A(L), it is possible to rewrite (16) in the
companion form (18), obtaining the

Static form of DFM:

i
— )\0 )\1 oA -1 ft*l —
(ﬁﬁ) \[ (Nxq)  (Nxq) (Nxq) : ok AFi+e
= v fr—pt1
=
(gpx1)
[ U, U, U, , U, ]
fi L. o Op 0 ! fia L) (18)
f (99 Y@ --- (9) (9) f 0
=1 — | o T On 0 t=2 (@)
= (@ o) (q) (q) + LT
ft—p+1 0 ' O. I . 0 ' ft_p O(Q)
ﬁ/—’ L (@ Y9 --- (9) (9) _JT 7@_/
“Wil) = E;(L) (q;;}) " (apxa)
(gpxqp)

= ®(L)F—1 + Gy,

where Uy, Wy, ..., U, are (¢ x ¢) matrices of loadings such that the state equation in (16) holds
when rewritten in terms if ;.
Working with dymanic DFM implies parametric estimation, while rewriting it to static

form leaves to nonparametric estimation (such as PCA), that is, without imposing any structure
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on transition equation in (18) and without assuming any functional form, such as (17), for

disturbances. Instead, only the data X; is used to estimate F}; , where r = gp such that
(Nx1) (rx1)

q < r < N. The present work employs static form of DFM to make Principal Components
estimation of factors, following Stock & Watson (2002a, 2011, 2016).
Consider estimating F; by cross-sectional averaging of X;, where the weighted average of

X, is calculated using a matrix of weights N~'A’, that is,

Ft - N_lAlXt. (19)

Cross-sectional averaging is used to eliminate influence of idiosyncratic disturbances e; on X,

preserving only variation attributed to factors. This elimination is possible under two hypothesis
made by Chamberlain and Rothschild (1983):

(i) N“'A’A —— D, , where D, has full rank;

N—o00 (rxr)

(ii) mazeval(X.) < ¢ < oo VN, where mazeval denotes the maximum eigenvalue, and
Ee = E(ete;).

Condition (i) guarantees that the factors are pervasive, that is, that they affect most or
all of the features, and that factor loadings are heterogeneous, that is, the columns of A are
not too similar. Condition (ii) assures that cross-sectional correlation among the idiosyncratic
disturbances {e;;} is limited (Stock and Watson (2011, 2016)).

Hence, (ii) assures that, by (weak) Law of Large Numbers, N~*Ae; ﬁ 0, and, using
(i), it comes out that N7'A’X; — N7'ANAF; ﬁ 0. Thus, N~'A’X, asymptotically spans
the space of factors. However, the weights N~!'A are infeasible because A is unknown. That is
when the Principal Component Analysis comes into play: in the weighted averaging estimator
(19), instead of A, use A (computing, thus, the sample version of this weighted average),
where A is the matrix of eigenvectors of the sample variance-covariance matrix of Xy, Yy =

Tt Zthl X X], associated with r largest eigenvalues of Sx. Note that these F' and A can be
derived as solutions to the following least squares problem:
. 1 < ,
Fotsbr A NT pa (X = AR) (X, = AR (20)
st. NT'NA=T,.

The constraint in (20) imposes orthogonality on A to preclude infinite solutions to the
optimization problem. To solve (20), first consider A as known and derive the OLS estimator
for F}, which is

F, = (NA)TIANX, = NTIANX,. (21)

Secondly, substitute (21) in (20), and note that the problem can be written as:
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mar NXyxA
A (22)
st. N7'AN'A =T,
which solution is A. Having calculated A, substitute it in (21) to obtain F.
Considering (22), note that A’SxA = D, where D is diagonal matrix of the eigenvalues

(rxr)
of Sy, and A is a matrix of eigenvectors associated with those eigenvalues. As the objective is
to find A that maximizes D, the program searches for r eigenvectors associated with r largest
eigenvalues of Sy (the matrix Sy has, in total, N eigenvalues). The eigenvalues in D at the
solution are disposed decreasingly, that is, di; is the largest eigenvalue, dss is the second largest
and so on. Let us consider this in some details (Dhrymes (1974)).
The task of an economist is to nowcast inflation rate m;, which depends on observable

features X, ; however, when N is very large, he wants to reduce the dimensionality of X, but
(Nx1)

this reduction must preserve the most of the variability of X;. So, he searches for r (mutually
uncorrelated) linear combinations of the elements of X; that capture most of their variability.
These linear combinations are called principal components.

To search for a linear combination f; = A’(l)Xt that maximizes the sample variance of the

elements of X, where A(;) is a vector of weights, one solves the following problem:

(Nx1)
mazr Ny
g (23)
st. NA=1,
which has the following Lagrangian associated:
L=NExA+ (1= NN, (24)
and the following First-Order Conditions:
oL - -
EI 2Xx A1) = 2mAy =0 . XxAp) = i)
or / (25)

From (25), it is clear that p; must be one of eigenvalues of S x; moreover, as the objective
function 'Y xA = p1, then this problem maximizes p; and so the solution vector A(j) is the
eigenvector associated with the largest eigenvalue of S x. The linear combination fi= A’(l)Xt is
called the first principal component of Xy, and the eigenvector A(y) is stored in the first column
of the matrix A.

To search for another linear combination f, = )\’(Q)Xt that also maximizes the sample
variance of the elements of X;, but is uncorrelated with the combination f;, one solves the

analogous problem, but with additional restriction that assures this uncorrelatedness:
mgx NS XA

st. XA=1 and cov(fi, fo) = )\’(1)2)()\ =0.
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The solution of the Lagrangian associated to (26) is the vector A(9), which is the eigenvector
associated with the second largest eigenvalue of Sx. The linear combination fo = )\’(Q)Xt is
called the second principal component of X;, and the eigenvector A is stored in the second
column of the matrix A.

This procedure is repeated r times, until obtaining ( A : and F, . If the economist admits
Nxr (rx1)
the following relation between the inflation rate and the factors:

Tern = BpFy + BLwe + g, (27)

then, the nowcast of the inflation rate is calculated as

frn = BpFr + Bwr, (28)
where w; is a vector of observed variables (e.g. lags of ;) that help to improve the nowcasting;
(Mx1)

BF and Bw are vectors of weights that were estimated by applying OLS to (27) using the
(rx1) (Mx1)

13 The economist

estimated factors Ft; and ;5 is the resulting zero-mean nowcasting error
makes this nowcast (28) at 7' and has the data available for {m;, X;, w;}7_;.

Stock and Watson (2002a) demonstrated that principal components of X; have good
asymptotic properties. Firstly, they are consistent estimators of the true latent factors F' when
N — 00, T — o00. Secondly, the feasible forecast 77, in (28) converges (as N — 0o, T — o0)
to infeasible forecast what would be obtained if A and F were known. This means that the
feasible forecast is first-order asymptotically efficient.

To finalize this concise exposition of DFM with PCA, let us prove a proposition (Dhrymes
(1974)) that highlights the importance of standardizing the dataset before implementing this
model, for not to assign different weights to the series due to measurement units differences.

Proposition 1. Principal components are not independent of the units in which the ele-
ments of X; are measured.

Proof. Given a vector of observable features X, , consider another vector X; whose
(Nx1) (Nx1)
elements differ from those of X; only in their scale of measurement: X; = UX,, where U =

diag(uy, ug, ...,un). Then, the variance-covariance matrix of X; is U SxU, the ith principal
component of X/ is fi = A\*, X}, and thus UXA]XU)\Z}) = p; Ay, where @ = 1,2, ..., N and Aj;)
is the eigenvector associated to the eigenvalue pf of the matrix U SxU. Note that Hf\il =
det(USxU) = [UP|Sx| # |Xx| = [1%, . Hence, 3i € {1,2, ..., N} such that p; # .
Now, f; = f7 if and only if )\’(i)Xt = )\*'(i)UXt, which implies Ay = U)\E"i). But this is
contradiction with the fact that, by construction, A\(; and )\Z‘i) are both orthonormal vectors. []
In the present work, the computational implementation of the DFM /PCA model described

above considered ¢ = 4,p = 4, thus » = 16; and M = 4, where

13The measurement equation in (18) and the equation (27) constitute what is known in literature on economic
forecasting as the diffusion index framework.
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Tt
we=| "L (29)

Tt—2

-3

5.2.2 Target Factors

This method was proposed by Bai and Ng (2008) to refine the DFM /PCA technique de-
scribed above. The motivation for this refinement is the following: When factors are estimated
by (20), the goal is to find linear combinations of X; that maximize the sample variance of its
elements. The predictive ability of x;, ¢ = 1,2, ..., N for 75 is not being taken into account.
Thus, the set X; can contain uninformative features (i.e., features that do not reduce the uncer-
tainty about mp), and calculating factors from these features can result in noisy factors with
poor predictive ability. To overcome this issue, Bai and Ng (2008) proposed to, first, select only
the features X{L C X, that have predictive power for 7, and then compute the factors based on
X} and not on all the features X,. These factors are called targeted because the subset X/ is
different for each forecasting horizon h and sample period t.

The subset Xth is selected, in the present work, using the method of hard thresholding*:
employing the statistical ¢ test to determine if the ith feature is marginally significant, without
accounting for joint significance with other features, and discarding this feature if it is not
significant at the 95% confidence level. As 7, depends not only on X, but also on w; defined

in (29), so w; must be treated as control variables. The algorithm is the following:

1) For each i = 1,2,..., N, regress my,, on z; and w;. Denote ¢; the t-statistic associated

with the coefficient of ;.

2) Make a ranking of the marginal predictive power of x;, i = 1,2,..., N, by disposing their

respective t-statistics in a decreasing order: |t1], |ta], ..., [tn].

3) Define the significance level a = 0, 05, select the features whose |t;| > t,, where t, = 1, 96,

and let £} be the number of these features.

4) Let X["(a) = (214,22, ..., Tkz¢)' be the set of the features selected in (3). Estimate the

factors F; from )N(th(a) using the method of Principal Components and obtain E,.

5) Run the regression (27) using F, instead of F, . Recall that r = gp. In this algorithm,
(rx1) (rx1)

p =4 and ¢ is defined using the Bayesian Information Criterion (BIC).

6) The nowcast is then obtained by (28).

Bai and Ng (2008) perform forecasting of inflation using the technique of Target Factors
and show that it reduces substantially the forecasting errors relatively to the DFM /PCA model.

14Bai and Ng (2008) also discuss application of soft thresholding techniques, that perform subset selection
and simultaneously shrink the values of the coefficients towards zero: LASSO, Elastic Net, and Least Angle
Regressions.
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The results of the daily nowcasting exercise carried out here show that Targeted Factors are
slightly better than the DEFM/PCA model (see Section 6).

5.2.3 Boosting Factors

Bai and Ng (2009) proposed this method as an alternative to the above discussed factor
models to select variables and lags, with focus on selection of lags. The motivation for using
boosting is that, if the pth lag of f or of 7 has high predictive power for 7, the typical selection
algorithms include all the previous lags, from 1 to p — 1, in the model, even if these lags have
no predictive power for w. The comprehensive boosting method treats each lag as a separate
variable.

Following Bai and Ng (2009), define a function ® : RY — R, which takes the vector

of observed variables X; and returns the predicted value for 7. Let C(m, ®(X;)) be the
(Nx1)

loss function that penalizes the deviation of ®(X;) from ;. The objective is to estimate the

function ® that minimizes the expected loss E[C(m, ®(X;))]. Under quadratic loss function,
1

C(m, ©(Xy)) = 5(71,5 — ®(X;))?, the optimal solution is ®(X;) = E(m|X;). Let us consider the

quadratic loss function. Let 2z; be the vector of all the N factors computed by PCA from
(BN x1)

X; and four lags for each factor. The boosting factors algorithm used here to estimate ®(z;),
fort =1,2,...,T, is the same as in Medeiros et al. (2019):

. 1
1) For t =1,2,...,T, initialize ®;( = " St m=T.
2) Form=1,..., M:

a) Compute u; = m; — Cft_hm_l for all t.

b) For each candidate variable i = 1,2, ...,5N, regress ; on z; to obtain the coefficient
l;i, for all ¢. Compute é;; = u; — Zz‘,ti?i, for all ¢, take é; = (€1, €2, ..., €r,)" and

compute SSR; = €}é;.
c¢) Select i, the index of variable that delivers the least SSR and let gZ;tvm = 2 tZA)Z»* .

m? m

d) Update <i>t,m = qA)t,m,l + m;gt,m, where v is the step length set to v = 0, 2.

3) Stop the algorithm after the Mth iteration or when the BIC starts to increase. In the R
code, M is set to M = 10N, where N is the number of columns in the database. This

step is to avoid overfitting.
The resulting model is

M

(i)t,M = (i)t,o +v Z QBt,m- (30)

m=1

As can be noted from the algorithm, Boosting is an ensemble algorithm (see Subsection 5.4)
that constructs models sequentially (differently from Bagging, that constructs models indepen-
dently), and each subsequent model corrects the errors of the previous one. The base learners
<th,m are trained in such a way that each weighting coefficient depends on the performance of

previous learners.
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5.3 Shrinkage techniques

When the model has learned too well the learning sample and is has low prediction capa-
bility out-of-sample, it is said that this model has been overfitted. One of the most frequent

cases when overfitting of a linear model can occur is when the object-feature matrix ( X : has
TxN

linearly dependent features (the database used in this work certainly has linearly dependent
features: e.g., Brazilian Federal Government Debt and Brazilian Federal Government Domestic
Debt). In this case, by definition, always exists a vector v # 0 such that (v, X;) = 0 for any

object X, . Suppose that, with this database X, the linear model has been learned (e.g., using
(Nx1)

gradient descent) and the optimal vector of weights w,, that minimizes the RMSE, has been
obtained. But then models with any vector of weights w, +av, a # 0, will return, on all objects,

the same answers as the optimal model, because (w, +av, X;) = (w., X;) +av, X;) = (w., X3),
——

so, these models will have the same RMSE as the optimal one, and will also be B(I))timal. Hence,
this optimization method can find optimal solutions with arbitrarily large weights. Usually,
occurrence of large weights indicates that the model has been overfitted. One of the ways
to strive against overfitting is penalizing large weights by adding to the quality functional a

penalty function (a regularizer), so the objective function becomes:

Qr(w) = Q(w) + AR(w), (31)

where Q(w) is the MSE quality functional and R(w) is penalty function. This work considers

two regularizers:

N
R(w) = [|wl||, = Z|wz| [L; regularizer| (32)
i=1
and
N
R(w) = [[w]}3 =Y w? [Ls regularizer]. (33)
i=1

In (31), A makes the balance between the accuracy of fitting of the learning sample and
the penalty for excessive complexity of the model. A is a hyperparameter, because it controls
the process of learning and, differently from parameter w, cannot be fitted on the learning
sample (because on the learning sample the optimal value for it is A = 0). Thus, A is adjusted
out-of-sample, using BIC. Larger A implies more simplicity of the model.

Though L; regularizer presents some difficulties by not having derivative at w = 0 (this
difficulty can be overcome by running, for example, the sub-gradient descent algorithm, but it
converges more slowly), nevertheless it has a good property: it is sparsity-inducing, because
it sets some weights to zero, thus eliminating uninformative variables from the model. Sparse
models can be desirable by different reasons: they do not contain irrelevant features that add
noise; they demand less computational cost, etc. Their drawback is that parameters’ consistency

holds only under strong conditions. Ls regularizer does not induce sparsity, that is, it usually
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does not eliminate irrelevant variables from the model. To see why this occurs, let us consider

two possible explanations.

wa wa,

(
N
C

Figure 5: Level curves of the quality functional and constraint sets of L; and Lo regularizers.
Source: Bishop (2006).

Firstly, note that the unconstrained minimization problem min(31) can be written as
w

constrained problem

s.t. R(w) < C,

(34)

where one-to-one relation between \ and C' is assumed. Figure 5 depicts, in blue, the level
curves of a convex quality functional, and, in red, the bounds of the constraint set (the left-side
graph corresponds to Lo regularizer, and the right-side one, to L; regularizer). The solution is
given by the point on the bound of the constraint set that is the nearest to the unconstrained
minimum. It can be thought that, in most cases, w, of the L; constrained problem will be
localized at one of the vertexes of the rhombus, thus, setting to zero one of the weights; while
w, of the Ly constrained problem probably will not set any weight to zero.

To see this in a numeric example, let w = (1,¢) be some vector of weights, where € is
arbitrarily small. Let us see what is more advantageous from the point of view of minimization
of L1 and Ls: to diminish the first component of w or to diminish the second component?

Diminishing the first component by §, with § < €, gives

I(1,€) = (6,0)lh = [T = b, et =1 -0+ (35)

and
1(1,€) = (5,0)]13 = |1 — 6, €||? =1 —26 + 6% + €% (36)

while diminishing the second component of w by the same § gives

I(Le) = (0,6)s = Ly =3l =1 +¢—3 (37)
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and
1(1,€) = (0,0)]13 = [|1,€ — 8[|3 = 1 4 € — 2€6 4 6°. (38)

As can be seen from (35) and (37), for minimization of L; it does not matter what com-
ponent to diminish. But as (36)<(38), the L, regularizer will prefer to diminish the biggest
components of w and not the smallest, so that, choosing L, regularizer gives less chances to
have small weights set to zero. Thus, the advantage of using L; regularizer is that it does
variable selection.

This paper implements the following 5 Shrinkage Models, which choose different penalty

functions.

5.3.1 LASSO

Proposed by Tibshirani (1996), this model uses L; regularizer and minimizes the following

objective function:

1
min ?HXw—wHZJr)\Hle. (39)

In the present paper this problem is solved for every forecasting period h = 1,2, ..., 20:

T—h N
min Z(ﬂ'ﬂ.h —w, X2+ A Z|wh,i| (40)
i — i=1

to obtain the forecast 7,1, = w;, X;.

5.3.2 Ridge Regression
Proposed by Hoerl and Kennard (1970), this model uses Ly regularizer and minimizes the
following objective function:
. 1 2 2
min ?HXw—WHQ—i-)\HwHQ. (41)

The solution can be written explicitly as

w, = (X'X + )" ' X'7. (42)

To see that this solution is unique, note that a singular matrix X’X suffers a small pertur-
bation when to each diagonal element of it is being added the number A, so each eigenvalue of
X'X is being lifted by A and thus this matrix becomes nonsingular and hence invertible.

Solving (41) for every forecasting period h = 1,2, ..., 20:

T—h N
min E (Ten — W), X¢)? + A E w; (43)
Wh, ’
t=1 =1

the forecast 7,1, = wj,X; is obtained, where the optimal weights are given by (42).
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5.3.3 Elastic Net

Elastic Net (Zou and Hastie (2005)) is a convex combination of L; and Lo regularizers.

The objective is

o1
mlgnTHXw—wH;%—oz)\Hle+(1—a))\|]w||§ , (44)

where « € [0,1]. In this work, the hyperparameter « is set ad hoc to be 0,5. The same value
for this parameter is defined in other works, e.g. Chakraborty & Joseph (2017) and Medeiros
et al. (2019).

Solving (44) for every forecasting period h = 1,2, ..., 20:

T—h N N
min Z(erh —w;, Xy)? + a) Z‘wh,i‘ +(1—a)A Zwi,m (45)
[ — i=1 i=1

the forecast 71, = wy}, X; is obtained.

5.3.4 Adaptive LASSO

As pointed out above, LASSO estimator is consistent only under very strong conditions
(Zou (2006)). Zou (2006) proposed the adaptive version of LASSO, where different weights are
assigned to different coefficients. The objective is

1
min ?HXw—wH;—|—)\Ho.z®1,UH17 (46)

1

where w; = —1 for i = 1, ..., N, where w; is the estimate from non-adaptive version of

T —

S
the model. Note that (46) is a convex optimization problem and has a global minimum. Zou
(2006) show that (46) has oracle properties, that is, performs as well as if the underlying subset

model was known. Solving (46) for every forecasting period h = 1,2, ..., 20:

T—h N

. / 2
min g (o — W), Xy)" + A E wi‘whﬂ-
wh
t=1 i=1

) (47)
the forecast 7,1 = wy}, X, is obtained.

5.3.5 Adaptive Elastic Net

This technique is analogous adaptive version of the Elastic Net model (44), where the

coefficients w are weighted by previously estimated by OLS weights w.

5.4 Ensemble methods

Ensemble methods make an average of the predictions of a group of models. The motivation
for using these techniques is that often a combination of different models (committee) performs
better than each model separately (Bishop (2006)).
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5.4.1 Bagging

Bagging is an acronym for "bootstrap aggregation" and was proposed by Breiman (1996).
It constructs independently M models and averages their predictions. The algorithm used is

the following (and illustrated in Figure 6):

1) From the original Learning Sample, generate M bootstrap samples. In this algorithm,
M = 100 and the length of bootstrap samples is the same as of the original learning
sample. Because this work deals with time series, the block bootstrapping is used, that

is, block resampling with fixed block lengths of | = 5.

2) On every bootstrap sample m = 1,2,..., M, learn a linear model by OLS and make a
variable selection by hard thresholding: eliminate the variables whose weights have t-
statistic [t| < ¢ where ¢ is 95% confidence level threshold. Then use only the selected

variables to learn again a linear model by OLS.

3) Compute the ensemble model as the average of these M base models:

1 M
a(X)pac =~ D bu(X). (48)
M
m=1
Bagging Algorithm
Step 1: Step 2:
Create multiple Build multiple
Data Sets models
(X o I}
00000
— 00000 — Model 1 —
[ 1 Jo1 1
Step 3:
— Model 2 Combine
Models
—* Ensemble Model
A
'Y YoLJ
Original Learning Sample . : l
Forecasts
o0000
Y IeoX 1} .
— 00000 e Model M — Test
. Testing Sample
YY) ".9 P
%@
@]
e @

Figure 6: Bagging Algorithm.

An important issue is how bagging affects the bias-variance decomposition. It can be

shown that the bias of any individual model is the same as the bias of the ensemble model, so,
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bagging does not worsen the bias of the model. As for the variance, if the errors of the base
models are uncorrelated, it can be shown that

Epac = iEI, (49)

M

where F is the average of the expected squared errors of the base models working individually,
and Fpag is the expected squared error of the ensemble model (48). That is, the bagging
technique can reduce in M times the expected squared error. However, the assumption of
uncorrelatedness of the errors of base models is unlikely to hold in time-series framework. The
more the base algorithms are correlated, the less is the reduction of the variance of a base
algorithm. But it can be shown that Egaq < Ei, that is, the expected squared error of bagging
is never greater than the expected squared error of individual models. More sophisticated

ensemble techniques, like Boosting and Random Forests, achieve more significant improvements
(Bishop (2006)).

5.4.2 Random Forests

Random Forests technique (Breiman (2001)) consists of bagging of regression trees.

A regression tree is a recursive binary partition of the set of features. To exemplify how a
regression tree is grown in a bi-dimensional features space (see Figure 7), let X; and X3 be the
features, and 7 is the target variable. As the sample is finite and every X; takes values in an
interval of R, the idea is to partition these intervals in some regions where each region Ry gives
the same prediction ¢ for m. That is, given the target variable m;,,, the set of N features X;

and a number of terminal nodes K, the splitting aims to minimize

where the constant ¢, is estimated as a sample average of realizations of 7 that fall into the

K 2
min— Y ale{Xi € R0} (50)
k=1

region Ry; [{-} is indicator function which is equal to 1 if the condition in brackets is satisfied
and is equal to zero if not; and 6, is the vector of parameters that define the region Ry,
k=1,..,K. In Figure 7, for example, the feature space was partitioned in five regions Ry,
E=1,..5.

Regression trees are rather complex and can achieve zero error on learning sample (thus,
are low-biased), but at the same time they are very subject to overfitting. The Random Forests
technique makes bagging of regression trees. It was argued that bagging allows to join low-
biased but highly sensitive to learning sample algorithms into a low-biased committee with low
variance. Regression trees, thus, are a good family of base algorithms that bagging can be
applied to. As pointed out above (see (49)), bagging can substantially reduce the variance of
base algorithms, provided that they are weakly correlated. In Random Forests, the correlation

between trees is reduced by two mechanisms. The first one is that, in each node, the feature

N
that is being split is selected from a random subset of n = L?J features and not from the
whole set of N features. The tree is grown until perfect quality of learning is reached (in this

regression framework, until each leaf has 5 objects). The second mechanism is that each tree
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Ra
to Ry

Figure 7: Decision tree. Source: Hastie et al. (2001).

is learned on a bootstrapped subsample. So, the Random Forests algorithm employed in this

work is the following:

1) From the original Learning Sample, generate M bootstrap samples. In this algorithm,
M = 500 and the length of bootstrap samples is the same as of the original learning
sample. Because this work deals with time series, the block bootstrapping is used, that

is, block resampling with fixed block lengths of [ = 5.
2) On every bootstrap sample m = 1,2, ..., M, learn a regression tree with K, regions.

3) The final model is the average of the forecasts of each tree applied to the original data:

M K

. 1 -~ . 5

Tt+h = M Z [Z Ck,m[k,m{Xta ek,m}] . (51)
m=1 [Lk=1
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5.4.3 Complete Subset Regressions

Proposed by Elliott et al. (2013, 2015), this technique is motivated by the fact that,
having N features in the dataset, it would be computationally infeasible to run regressions

with all possible combinations of features. Thus, from K < N candidate variables only a
|

subset k < K of the features is used and regressions with all possible combinations

(K —k)!k!
of these features are run. This set of models for a fixed value of k is called a complete subset.
Then, the average of predictions of these models is taken. So, the algorithm implemented here

is the following:

1) Pre-selection step: For each i = 1,2, ..., N, regress m;.j on x;; (here, the control variables
wy are not being considered). Denote ¢; the t-statistic associated with the coefficient of
x;. Make a ranking of the marginal predictive power of x;, i = 1,2, ..., N, by disposing
their respective t-statistics in a decreasing order: |t1|, |ta], ..., |tn|. Select K = 20 variables

with the greatest predictive power for ;.

2) Let £k = 4 and run = 4845 complete subset regressions of m;.; on these

K= k)

features.

3) Let b;(X) be the forecast of the ith subset regression, i = 1,2, ...,4845. The final forecast
of the Complete Subset Regressions is given by averaging the individual forecasts with

equal weights:
| B

Ttrh = M 2 bZ(X> (52)

5.4.4 Jackknife Model Averaging

Jackknife Model Averaging, proposed by Hansen and Racine (2012), also performs model
averaging, but, instead of using simple average, it employs weighted average, where the weights
are selected by minimizing a leave-one-out cross-validation criterion.

Let {a', 02, ..., i} be M linear models that are candidates to predict m;,j,. Considering
the Least Squares estimation, the mth model (m = 1,..., M) is given by

~mo__ m/l,~m
:U’t - Xt W,

1 (53)
— Xtrn/ (Xm/Xm) Xm/ﬂ'.
The mth Jackknife model is then given by
Iam — Xm/w*m
t t (54)

m m m -1 m
= XM (XX ) X ym-en)
where @!" is the estimator @w!* computed when the observations (m; i, X;) are deleted. The

mth Jackknife model has the vector of residuals given by ¢ =7 — ™.

The Jackknife Models Averaging is
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subject to

=) wren (57)

To estimate the weights w, the following program is computed:

. I !~ ’
min —eé(w)é(w)=w Stw
in () e(w) o)
st. weH,
where Sp = —é’é. The expression minimized in (58) is known as cross-validation criterion.

(MxM)
Thus, the JMA forecast is given by 7,4, = fi'w,, where w, is the solution to (58). Hansen

and Racine (2012) show that w, is asymptotically efficient, that is, achieves the lowest possible

expected squared error.

5.5 Hybrid models

The following two models were designed in Medeiros et al. (2019) to understand if good
forecasting performance of the RF model is due to nonlinearities in inflation process that are

being captured or to the method of variable selection that RF employs.

5.5.1 RF/OLS
The algorithm is the following:
1) Do the Step 1 of the Random Forest algorithm.
2) On every bootstrap sample m = 1,2, ..., M:

a) Learn a regression tree with 20 nodes and save n < 20 split variables.
b) Run the OLS on the selected splitting variables.

c) Compute the forecast @},
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3) The final forecast of the model is given by
| M
ﬁt+h - Mmzzlﬁ-ﬁh (59)

The motivation to implement this model is the following. If it performs as well as RF,
this indicated that nonlinearities in inflation are not important to explain good performance of
RF. If it performs not so well as the RF, this indicates that nonlinearities are important. If it
performs better than bagging — which, like RF, is an ensemble method, but is linear while the
RF is nonlinear —, this indicates that variable selection made by RF is important to explain its

performance.

5.5.2 adaLASSO/RF

This model firstly performs variable selection using the adalLASSO method, and then
employs these selected variables to implement the RF model. The motivation is that if
adaLLASSO/RF performs as well as the RF, this indicates that variable selection made by
RF is not likely to explain performance of RF.

6 Results and discussion

6.1 Comparison of the performance of ML methods

To compare the performance of above described ML models in the task of daily nowcasting,
the quality functionals (1) and (2) were defined, and calculated for each model’s results. To
evidence the benefits'® of using high-dimensional ML models instead of the univariate bench-

marks, Table 2 reports each model’s nowcasting error relatively to the nowcasting error of the

Random Walk model: M.

As evidenced by the resfll‘ncrso{n Table 2, all the Machine Learning methods (except Bag-
ging) perform better than the univariate benchmarks. The benefit of using big data instead
of univariate models is of approximately 4% for Shrinkage methods, 10% for Factor Models,
12% for Complete Subset Regression and comes to be of 20% for Random Forest. The best
performing models are Random Forest, Complete Subset Regression and Target Factors.

Within Shrinkage methods, LASSO, Ridge and ElNet perform better than adaptive ver-
sions of LASSO and ElNet. Another finding is that LASSO has the same nowcasting error as
Ridge Regression in this exercise, so L regularizer delivers the same error as the Ly regularizer.

Factor models perform much better that Shrinkage methods, and targeting the factors
reduces slightly the nowcasting error, as well as boosting.

On the other hand, Bagging has the worst performance, deteriorating the quality of pre-
diction (in terms of RMSE) in more than 50% compared with RW benchmark. Jackknife Model
Averaging has the third worst performance, but it is still slightly better than RW.

|4 . . . .
15To be precise, "benefit" means "reduction of nowcasting error relatively to benchmark".
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Table 2: Nowcasting performance of Machine Learning models in terms of RMSE and MAE of
Random Walk benchmark.

Model RMSE (MAE) ratio
RW 1,00 (1,00)
AR 1,039 (1,061)
LASSO 0,954 (0,952)
adaptive LASSO 0,963 (0,961)
Elastic Net 0,957 (0,955)
adaptive Elastic Net 0,965 (0,963)
Ridge Regression 0,954 (0,953)
Bagging 1,592 (1,352)
Complete Subset Regression 0,881 (0,874)
Jackknife Model Averaging 0,973 (0,982)
DFM with PCA 0,908 (0,903)
Target Factors 0,889 (0,899)
Boosting Factors 0,904 (0,900)
Random Forest 0,808 (0,789)
Random Forest / OLS 0,945 (0,936)
Adaptive LASSO / Random Forest 0,934 (0,937)

Random Forest presents the best performance. Asin Medeiros et al. (2019), the question is:
is this performance due to nonlinearities in inflation process that are being successfully captured
by the model or due to variable selection that RF makes? As Table 2 shows, the hybrid model
RF/OLS performs worser than RF; this indicates that nonlinearities are important to nowcast
inflation. On the other hand, Random Forest/OLS performs rather better than Bagging, which
is a linear ensemble method; this indicates that the method of variable selection that RF
employs is more efficient than other methods of dimensionality reduction considered in this
paper. Another result which indicates it is that the hybrid model adaLASSO/RF performs
rather worser than RF. Hence, the variable selection made by RF matters for the quality of
inflation nowcasting.

As for nonlinearities, Medeiros et al. (2019) show that in periods of high volatility of
inflation RF performs better than in periods of low volatility. Garcia et al. (2017) argue that
Brazilian inflation exhibits high short term-volatility. One of the reasons for this is uncertainty;,
which accounts for nonlinearities in the economy. This can possibly explain good performance
of the RF, which is a highly nonlinear model.

The results presented in Table 2 are compatible with the empirical evidence found in the
literature about inflation forecasting. Especially, in Medeiros et al. (2019), RF was found to
yield the best performance; in Garcia et al. (2017), CSR dominated another models. Here,
both of them are the two best models for inflation nowcasting. As in Medeiros et al. (2019),
Shrinkage methods here perform very similarly, JMA performs poorly, and boosting or targeting
factors improves only slightly the quality of DFM/PCA model. On the other hand, there are
several findings in this work that are different from those encountered in the literature. Firstly,
the maximum of nowcasting error reduction that ML models can do is 20% in this work; in
Medeiros et al. (2019), RF reduced in 30% the forecasting error relatively to the RW benchmark.
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Secondly, Medeiros et al. (2019) and Garcia et al. (2017) report poor performance of Factor
Models and show that Shrinkage methods perform better; in the present work, all the Factor
Models perform better than Shrinkage, especially, Target Factor model reduces the nowcasting
RMSE in 11%, while Shrinkage techniques reduce it only in about 4%. Thus, the present
exercise suggests that, for the purposes of nowcasting of Brazilian inflation, it can be better to

use all the available information than to discard features that are less informative.

6.2 Benefits of daily nowcasting vis-a-vis monthly forecasting

Compared to the existing literature, a contribution that this work aims to do is to perform
a daily real-time nowcasting of inflation, instead of forecasting it monthly as in Garcia et al.
(2017), Medeiros et al. (2019) and other works that employ ML methods to forecast inflation.
To measure quantitatively the benefits of daily nowcasting wvis-a-vis monthly forecasting, the
following monthly forecasting exercise was performed:

From the original sample described in Section 2, with 174 features and 2974 observations,
only monthly frequency features were considered in their original (monthly) frequency, without
interpolation. Thus, the sample employed in monthly forecasting exercise has 142 observations
(from 30/11/2006 till 31/08,/2018)'® and 137 features. Its learning sample has 95 observations
and the testing sample has 47 observations (from 31/10/2014 till 31/08/2018).

The only forecasting horizon that is of interest in this work is one-month-ahead, because
the question is: "What are the benefits of working on nowcasting of inflation every day, mon-
itoring it and issuing the prediction daily, considering informational news that appear in the
dataset every day with updating of the features, vis-d-vis calculating the predicted inflation
for the current month only once a month, using monthly frequency data?" Thus, only h = 1
is implemented for all the models in monthly-frequency exercise, where h is monthly-frequency
time horizon.

The computer codes used in daily exercise were modified to not proliferate the number
of features. Recall, from Section 2, that daily nowcasting considered also four lags for each
feature and four principal components, augmenting the number of features from 174 to 712. But
while the number of observations in daily framework is big enough to permit this, in monthly
framework with only 142 observations this proliferation of features precludes the implementation
of the most part of algorithms. Thus, in monthly framework, only the original 137 monthly
features were used, without augmenting the dataset by lags or factors.

The Appendix contains graphs that show the inflation predicted by daily nowcasting and
by one-month-ahead forecasting for each of the models implemented in this paper. In the
graphs of daily nowcasting, the predicted inflation out-of-sample is depicted in red. As can be
observed graphically, the nowcasting is more accurate than one-month-ahead forecasting.

The quality functionals defined to assess the algorithms in monthly exercise are RMSE (9, y;)
= \/% Zthl (9; — yt)2 and MAE (9, ;) = %Zle |0+ — y¢|, where T" = 47, as stated above.

Note that the errors in monthly exercise are calculated online, which is made possible by the

16The sample stops in August 2018 because that month’s inflation was only known in September, and, as the
daily sample stops in 03/10/2018, September’s inflation was not already known on 03,/10,/2018.
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fact that the true inflation rate is observed monthly, that is, in each row of the dataset. This
is not the case in daily nowcasting framework, where the true inflation is observed only once
a month, so the errors have to be calculated using the formulas (1) and (2). The results
are presented in Table 3, where the values of errors are shown, and not their ratio to the

RW errors as in Table 2. The benefit of daily nowcasting for each model m is calculated as
( Error of daily nowcasting for model m > 100

~ Error of monthly forecasting for model m

Table 3: RMSE and MAE of Machine Learning models in daily nowcasting and monthly fore-

casting of inflation.

Model RMSE (MAE) | RMSE (MAE) | Benefit of
of daily of monthly daily

nowcasting forecasting nowcasting
RW 0,152 (0,114) 0,313 (0,238) 51% (52%)
AR 0,158 (0,121) 0,306 (0,239) 48% (49%)
LASSO 0,145 (0,109) 0,305 (0,236) 52% (54%)
adaptive LASSO 0,146 (0,110) 0,295 (0,240) 50% (54%)
Elastic Net 0,145 (0,109) 0,319 (0,249) 54% (56%)
adaptive Elastic Net 0,147 (0,110) 0,296 (0,239) 50% (54%)
Ridge Regression 0,145 (0,109) 0,313 (0,233) 54% (53%)
Bagging 0,242 (0,154) 0,307 (0,236) 21% (35%)
Complete Subset Regression 0,134 (0,1) 0,320 (0,254) 58% (61%)
Jackknife Model Averaging 0,148 (0,112) 0,310 (0,241) 52% (54%)
DFM with PCA 0,138 (0,103) 0,284 (0,221) 51% (53%)
Target Factors 0,135 (0,102) 0,290 (0,224) 53% (54%)
Boosting Factors 0,137 (0,103) 0,298 (0,224) 54% (54%)
Random Forest 0,123 (0,090) 0,290 (0,219) 58% (59%)
Random Forest/OLS 0,144 (0,107) 0,281 (0,209) 49% (49%)
Adaptive LASSO/Random Forest 0,142 (0,107) 0,311 (0,240) 54% (55%)

The findings are encouraging: it is verified that the gains of nowcasting the inflation daily
may reach 60% and are higher than 48% for all models except Bagging. Note, from the first
line of Table 3, that just filtering the target variable daily via Kalman Filter is 51% better
than forecasting inflation once a month. The most substantial reduction in RMSE is presented
by CSR and RF. Among Shrinkage methods, it is worth noting that Ridge Regression reduces
the error more than LASSO; furthermore, adaptive versions reduce the error less than their
original models. Baggging does not have the worst performance among monthly models, but it
performs worse than benchmark in daily nowcasting, so its benefit is the lowest, 24%. Factor
Models are all beneficial for daily nowcasting.

These benefits of nowcasting the inflation daily occur because, during the month, the
information set becomes larger every day due to new data that is being released on many
macroeconomic series. Updating the forecast of target variable with the use of this new in-
formation reduces the uncertainty about the target during the month, i.e., reduces forecasting
error. On the other hand, when the prediction is made once a month, it is as if every day the

same prediction was issued by the economist without updating it during the month, without
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using new information. The empirical evidence on benefits of nowcasting with high-frequency
data wvis-a-vis forecasting with low-frequency data is widely provided by the literature on eco-
nomic nowcasting, e.g. Giannone et al. (2008), Banbura et al. (2013), Modugno (2013) and
others.

To obtain the results illustrated by Tables 2 and 3, formulas (1) and (2) were used to
calculate each model’s errors in daily nowcasting exercise. Note that, from (1) and (2), it can
be seen that each model m’s nowcasting error that appears in the first column of Table 3 is the
average of the 20 nowcasting errors corresponding to each nowcasting horizon h = 1,2, ..., 20
(in days). As explained in Section 3, for each model m there are 20 models being computed;
then, their predictions are being averaged over the 47 months of the testing sample and over
the 20 models. For example, working with CSR (or any other) technique, if the true IPCA rate
relative to August was released by IBGE on 08/09/2015, so on 09/09/2015 the prediction of
the C'S Rj—20 model, which is made for 20 days ahead, is calculated and compared with the true
inflation released on 08/10/2015. In the same manner, on 10/09/2015, the prediction of the
CSRj—19 model, which is made for 19 days ahead, is calculated and compared with the true
inflation released in 08/10/2015. And on 07/10/2015, the prediction of the C'SR,—; model,
which is made for one day ahead, is calculated and compared with the true inflation released in
08/10/2015. Table 4 illustrates the nowcasting error for each technique and for each nowcasting
horizon. For example, for each month of the Testing Sample, the model C'SRj—_s yields one
nowcasting error. The result in Table 4 for the model C'SRj—o is the average of these errors
over the 47 months of the Testing Sample. The same holds for any technique and any horizon
h. Thus, the formulas to calculate RMSE and MAE of each cell of Table 4 are RMSE (9, y;) =
VAT, (3 —u)* and MAE (o.y) = + 57, | — . where T = 47. Note that Table 4 is

the detailed version of Table 3, that is, Table 4 shows explicitly which errors are being averaged

by (1) and (2) over horizons to yield the results of Table 3. Moreover, in each cell of Table
4, the nowcasting error is compared with the corresponding forecasting error of the second
column of Table 3 to quantify the benefit of daily nowcasting wvis-a-vis monthly forecasting.
For example, for CSR technique, the errors of C'SRy—s9, C'SR}—19, ..., CSRp—1 models were all
compared with RMSE = 0,320 and MAE = 0,254, to calculate percentage benefit of daily

RMSE of CSR), MAE of CSR),
0350 ) % 100 for RMSE and (1 - ) % 100

for MAE, where h = 1,2, ..., 20. The same holds for all other techniques: LASSO, RF, etc.

The detailed results in Table 4 show that, generally, when h decreases from 20 to one, that

nowcasting given by (1 —

is, while the date of new release of true IPCA is approaching, the nowcasting error decreases,
and the benefit of daily nowcasting increases. Figures 8-9 were plotted to illustrate this. In fact,
during the month, new information is entering the information set, and this helps the economist
to issue a more accurate prediction. It can be seen that the benefits of daily nowcasting can
be as high as 70% for some horizons. On average, they are in order of 50%-60%), as evidenced
by Table 3. One possible reason of why the gains are so high is that monthly forecasting does
not take into account the daily-frequency features, such as the inflation Monitors. As discussed
in the next Subsection, the most informative features are the daily ones, thus not considering

them can lead to bigger prediction errors.
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Figure 8: RMSE for different nowcasting horizons.
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Figure 9: MAE for different nowcasting horizons.
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6.3 Feature informativeness

For real-time nowcasting with high-dimensional data, it is crucial to know which features
are the most informative so that to keep track of their releases more vigilantly. This subsection
shows which variables were considered the most informative by three models: LASSO, Ridge
Regression and Random Forest. The choice of these models is due to their different approaches:
LASSO is linear and sparsity-inducing, RR is linear and nonsparsity-inducing, and RF is highly
nonlinear and nonsparsity-inducing. It was verified that the sets of variables selected by these
models for different horizons h are quite similar, so let us consider only models with h = 1.

The LASSO model selected only 7 variables from the dataset; all other features were set
to zero. The selected features are: Monitor IPCA Ponta, Monitor IPCA-15 Ponta, Brazil AN-
BIMA TPCA Inflation Assumption for NTN-B M+0, Brazil CPI IPCA IBGE Transportation
Inflation, Brazil CPI INPC, FGV Brazil CPI IPC-DI, and FGV Brazil Construction Prices
INCC-10. Two groups of variables are represented here: (I) Prices and (II) Money and Fi-
nance; another groups were considered uninformative by the model. From these 7 features, 3
of them have daily frequency and 4 have monthly frequency (and thus were interpolated to
daily frequency via Kalman Filter). It is worth noting that, from four Monitors, the Ponta
versions were selected. As stated in Section 2, the Ponta, which is 7-days-index, anticipates
the movements of the 30-days-index. Being selected by LASSO algorithm indicates that it is
more useful than 30-days Monitors for the purpose of daily nowcasting of inflation. As can be
consulted in Table A in Appendix, the ANBIMA projection for inflation is used for NTN-B
yield calculator to adjust par value until the IPCA release date. Also, as pointed out in Table
A, Transportation is the second most important item in composition of IPCA index, corre-
sponding to 21,9527% of IPCA, according to POF 2008,/2009 (Research of Household Budget).
Being selected by LASSO confirms its informativeness about IPCA.

The Ridge Regression model did not set any of the 173 features to zero; the smallest
coefficients are very close to zero but are not exactly zero as in LASSO (the reason for that was
illustrated in Figure 5). To show which features were considered the most informative by the
RR model, the features are ranked according to the absolute value of their weights (recall that
all the features have been previously standardized so this comparison is valid). Below, the first

20 most informative features are listed (in decreasing order of informativeness):

1
2
3

) Brazil Reserve Requirements of Financial Institutions - Savings Deposits;
) Monitor IPCA,;
) Monitor IPCA-15;

4) Brazil ANBIMA IPCA Inflation Assumption for NTN-B M+0;

5) Monitor IPCA Ponta;

6) Brazil Current Account Balance on Goods and Services;

7) Brazil IPCA-15 CPI Extended National;

8) FGV Brazil CPI IPC-10;

9) Brazil CPI INPC;
10) Brazil CPI IPCS Weekly;
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11) Brazil ANP Sales of Ethanol by State - National Total,
12) Brazilian States Debt;
13) Monitor IPCA-15 Ponta;
14) Brazil CPI IPCA IBGE Transportation Inflation;
15) Brazil Financial Account Loans Net Incurrence of Liabilities;
16) Brazil Money Supply M3;
17) Brazil Federal Income Agency Tax Collection Nominal;
18) Brazil Business Loans 15 to 90 Days Late;
19) Brazil Commercial Banks Foreign Exchange Position;
)

20) Nominal Exchange Rate BRL USD.

All the groups of features are represented in this selection, except for two groups: (VI)
Labor and Employment and (VII) Expectations: neither feature from these two groups appears
among the first 53 most informative variables in this model. Analyzing the 20 most informative
features, it comes out that the most represented group is (I) Prices (as was expected to be),
followed by (II) Money and Finance, then by (V) Public Sector, (IV) External Sector and
(III) Production and Sales. All the four Monitors entered this list, and the most informative
monitors are the 30-days ones. Five of the seven features selected by LASSO entered this list,
which corroborates their importance. The list above also evidences the importance of daily-
and weekly-frequency features: they stand for 35% of this list, whereas they represent 20% of
the original dataset.

To assess the informativeness of the features in the Random Forest model, two metrics are
used: the % Increase in MSE and the Increase in Node Purity.

To calculate the % Increase in MSE for each feature n =1, ..., N, the following algorithm

is executed:

1) For each tree m = 1,..., M, compute the MSE on the OOB (out-of-bag) portion'” of the
data.

2) For each feature n =1, ..., N:

a) Randomly permute its values in OOB samples. Then, repeat step (1);

b) For each tree, calculate the (normalized) difference between the two MSE’s: the
MSE of step (1) and the MSE of step (2a);

c¢) Calculate the average, over the trees, of the decrease in accuracy due to the permu-
tation. Express this result in percentage. This is the % Increase in MSE measure

for the feature n.

170Qut-of-Bag portion of the data are observations that were left out-of-sample during bootstrap sampling.
This portion is usually about one-third of the original sample’s number of observations. Indeed, when sampling
T instances with replacement from the original sample of size T', the probability that an observation t is never

sampled is (1 — %)T Now, take lim7_, oo (1 — %)T =1x0,368.

e
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The higher the %IncMSE for a feature n, the more important is this feature, because using the
same model with the data that is the same except for this feature deteriorates the predictive
power of the model.

The Increase in Node Purity is the total decrease in node impurities (measured by the
Residual Sum of Squares) from splitting the feature n, averaged over all trees. The higher the
IncNodePurity, the more informative is the feature.

Table 5 shows the 20 most informative features according to %IncMSE and Table 6 does

the same according to IncNodePurity.

Table 5: The 20 most informative features in the Random Forest model according to % Increase

in MSE.
Feature %IncMSE
1) Monitor IPCA 19,35968551
2) Monitor IPCA Ponta 13,21532067
3) Monitor IPCA-15 Ponta 12,26039434
4) Brazil CPI IPCA IBGE Food Inflation 7,92423957
5) Monitor IPCA-15 7,49133694
6) Brazil Total Electricity Consumption 6,03749282
7) Brazil CPI IPCA IBGE Hous Inflation 6,00058733
8) Brazil Money Supply M1 5,50997775
9) Brazil Financial Account Direct Investment Intercompany Assets 5,24058485
10) Brazil Fed Govt credit provided to Official Financial institutions in % | 5,22827035
of GDP
11) Brazil Industrial Production Activity Extractive Industry 5,22219543
12) Brazil Monetary Base Bank Reserves 5,0766168
13) Brazil International Reserves Liquidity Concept Total US$ 5,07587178
14) FGV Brazil CPI IPC-DI 4,96540274
15) Brazil CNI Consumer Confidence Household Debt Situation 4,95498586
16) Brazil CPI IPCA Coefficient of Variation Market Expectation Next 12 | 4,94316227
Months
17) CNI Brazil Manufacture Industry Real Wages 4,90652866
18) Brazil Public Net Fiscal Debt % of GDP 4,85433722
19) Brazil Fin Acct Portfolio Investment Acquisition of Financial Assets | 4,84533886
Credit
20) Secovi Brazil Real Estate Units Average Sale Time Period 4,83955007
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Table 6: The 20 most informative features in the Random Forest model according to Increase
in Node Purity.

Feature Inc. Node
Purity

1) Monitor IPCA 614

2) Monitor IPCA-15 95,3

3) Brazil ANBIMA IPCA Inflation Assumption for NTN-B M+0 3,72

4) Monitor IPCA Ponta 1,37

5) Monitor IPCA-15 Ponta 0,978
6) Brazil CPI IPCS Weekly 0,202
7) Brazil Auto Sales Total 0,152
8) Brazil CPI IPCA IBGE Food Inflation 0,149
9) Brazil Business Loans 15 to 90 Days Late 0,136

10) Bloomberg Barclays EMGILB Ex-Brazil Govt Inflation-Linked 1-10yrs | 0,120
CPI

11) Brazil Amplified Retail Sales Volume 0,102

12) Brazil Real Minimum Wage 0,0958
13) Brazil Manufactured Products Tax Income Nominal 0,0952
14) Brazil Financial Index 0,0951
15) Brazilian States Debt to Foreigners in % of GDP 0,0909
16) Brazil ANBIMA Estimated Index Assumption IGP-M 0,0902
17) Ibovespa Index 0,0890
18) Brazil Income Tax Collection Nominal 0,0871
19) CNI Brazil Manufacture Industry Capacity Utilization 0,0850
20) Brazil Total Electricity Consumption 0,0848

Analyzing Tables 5 and 6, the following conclusions can be made:

— The four Monitors are on the top of the list, and the most informative one is the Monitor

IPCA;

— The Food component of the IPCA inflation is one of the most informative features. In
fact, according to according to POF 2008/2009 (Research of Household Budget), this is
the most representative component in the IPCA index, having the weight 22,0828% in
the IPCA.

— Brazil ANBIMA IPCA Inflation Assumption for NTN-B M-+0 is confirmed, by Table 6,
to be one of the most informative features, as was already indicated by LASSO and Ridge

variable selection.

— All the groups of features are represented in these Tables, i.e., these lists are more di-
versified. In Table 5, for example, the Prices Group is the most represented: it has 7
features among the most informative. The second most represented group in Table 5 is
Production and Sales (4 features), followed by Money and Finance (3 features), External
Sector (2 features), Public Sector (2 features) and Labor and Employment (1 feature) and
Expectations (1 feature). It is worth noting that, differently from the Shrinkage models,

here the Production and Sales features are more important.
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— In Table 5, Money Supply M1 appears in the top 10 features, which can indicate the

importance of the Quantitative Theory of Money to analyze the inflation process.

The figures 10-13 illustrate the word clouds for LASSO, Ridge Regression and Random
Forest (%IncMSE and IncNodePurity) variable selection. The names of the features displayed

in these Figures are their Bloomberg tickers (consult Table A in appendix).

mon_ipcap

BZCLASEU |Ind

IBREMC1M_Index

BZFCTRAMN_Index

mon_lpca1so

BZPIINPM_Index

IBREPCDM e
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Figure 13: Word cloud for Random Forest variable selection according to Increase in

Purity.
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7 Conclusion

This paper presented original empirical results of nowcasting Brazilian IPCA inflation
rate daily, using Machine Learning techniques. Firstly, a large mixed-frequency dataset was
collected, and Kalman Filter was used to balance the panel, interpolating all the features to
daily frequency. The interpolation used daily covariates to increase the accuracy of the filter.
Then, two univariate models and 14 Machine Learning models were learned on the sample from
01/12/2006 till 08/10/2014 and tested on Testing Sample from 09/10/2014 till 03/10/2018.
Their predictive quality was assessed by the RMSE and MAE functionals. The 3 tasks that
were stated in the Introduction as the aims of this work were performed, and their results
can be summarized as follows: (1) There is a benefit of using data-intensive Machine Learning
techniques relatively to univariate benchmarks that varies from 4% to 20%; (2) There is a large
benefit of nowcasting inflation daily instead of forecasting it one a month, and this benefit
varies from 50% to 60%, on average; (3) The most informative features are the daily-frequency
ones, especially the Monitors of inflation, produced by FGV.

This work is all about measuring the benefits of daily nowcasting; however, the costs should
also be considered and "put on the other plate of the scale". Complex ML models, such as
RF, have high computational cost, and, the larger the database, the more time it takes to be
learned. Hence, feature proliferation should be avoided, and the efforts should be concentrated
on the few most informative features. It seems that the most important path for future research
in this topic is optimization of the computer codes that perform nowcasting, because inflation
nowcasting is a task that imposes time constraints on the velocity of the codes. If a code has a
cost of completing this task in some days, the nowcasting exercise becomes meaningless because
until then the true inflation rate becomes known.

Given this velocity requirement to codes for nowcasting, there is a wide range of further
research topics that can develop this research program. Alternative Machine Learning methods
can be implemented, such as deep Neural Networks, Bayesian VAR etc. Cutting-edge research
in this area can lead to creation of new, more efficient, Machine Learning techniques that
perform even better the task of inflation nowcasting. Creation of new, more efficient models is
a product of trial-and-error, which is the essence of the art of pattern recognition.

Another suggestion for future research is to implement a combination of nowcasts. This
can be made, for example, by dividing the sample in three parts (for estimation of the models,
estimation of the weights for each model and computation of prediction errors) and using RF

or adalLASSO for model selection (instead of feature selection).
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